

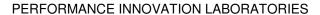
PERFORMANCE INNOVATION LABORATORIES

DROP TESTING REPORT FOR NASA TOL0702030

Report by: Billy Lee

Title: Process/Test Engineering Specialist

Signature:


Date: November 2nd, 2009

Approved by: Jason Bragg

Title: Operations Engineering Advisor

Signature:

Date: November 2nd, 2009

CLIENT INFORMATION

Client Name: Kurt Kessel

Company Name: TEERM NASA Principal Center (ITB, Inc.)

Address: Kennedy Space Center, FL 32899

Email: (321) 867-8480

Telephone: kurt.r.kessel@nasa.gov

ISO9001 Registered #001917

CELESTICA INC.

Performance Innovation Laboratories

844 Don Mills Road Toronto, Ontario

M3C 1V7

www.celestica.com/engineering

Contact: Marianne Romansky

Telephone: 416-448-6284

General Inquiries: 416-448-5800

Revision History						
Revision Created by Date Short Description						
1	Billy Lee	Nov. 2, 2009	Initial Version			

PROJECT SUMMARY

A board-level drop shock test was performed on NASA DOD LFE Lead-free and Mixed (leaded/lead-free) circuit board assemblies. The testing followed the statement of work titled "LFE Drop Test SOW CELESTICA.DOC" supplied by ITB, Inc. on September 4th, 2007. Twenty assemblies in all were drop tested. Each board was monitored for shock response and selective component net resistance. In addition, five cards were monitored for strain at 4 locations each. The assemblies were fixtured to a drop table and subjected to ten shocks at 500G. The input shocks were consistent, varying on average less than 2% under and 5% over 500G from drop to drop and batch to batch. The duration for each drop was very consistent as well, with a minimum of 1.88ms and a maximum of 2.02ms for the entire project.

The strain level of each strain gauge was consistent throughout all drops. For all five cards the average maximum and minimum principal strain levels were the same within test error. The average maximum principal strain at SG1, SG2, SG3 and SG4 were 2900ue, 3500ue, 4600ue and 4700ue respectively. The average minimum principal strain at SG1, SG2, SG3 and SG4 were -1800ue, -2000ue, -2000ue and -2500ue respectively. Since SG3 & SG4 were attached close to center of the test board, the strain readings were higher due to greater deflection of the board. As expected, strain readings at SG1 & SG2 were lower than SG3 & SG4 since they were attached away from the center of the board.

As expected, the only component type to show a significant number of electrical failures during this test were the PBGAs. The PBGA-225 electrical failures mostly occurred at or near the corner joints. Twenty-eight out of the 176 PBGAs survived all 10 drops. The surviving parts were located near the outer edge of the board where the strain was found to be minimal. The earlier Crane test had 25/90 PBGAs survive 10 drops; however none of the Crane PBGAs were reworked. On average, most reworked parts failed after a fewer number of drops than compared to non-reworked BGAs. Surprisingly, there was no significant difference in the number of drops until failure between BGAs reworked 1x vs. 2x, vs. 3x, perhaps physical failure analysis will explain this phenomenon. As expected, SnPb and SAC305 BGAs on ImmAg boards had similar failure rates, possibly due to the predominance of pad cratering (FA required to verify). PBGAs reflowed on ENIG boards typically failed after fewer drops than those on ImmAg boards; future physical failure analysis may reveal brittle interfacial fractures at the Ni board side.

There were no electrical fails for the CABGA-100, QFN-20 or TSOP-50 parts during the 10 drops. Future physical failure analysis however may reveal hidden mechanical damage which could be a reliability concern. Only three of the 60 CLCC-20 parts showed electrical fails (all failed during the 4th drop). It would be interesting to know the physical failure mechanism of these outliers. One of the QFP-144 parts showed an electrical fail during drop 3, note however that this part was marked as a "touch-up" by the assembly team.

Although there were duplicates of each component type on the test vehicle, every component experienced a unique strain/strain rate condition due to its particular location on the board. As a result each sample depicts a unique data point and these cannot be easily lumped together. Due to the limited number of samples, the absence of physical failure analysis (at this time) and the large number of electrically survivors, excluding the BGAs, it is not possible to draw any firm conclusions as to the significance of the electrical failure data.

It is likely that a great deal of the electrically-functional parts on these drop tested boards have hidden mechanical failures. Any future physical failure analysis should include dye and pry mapping of the majority of the components from a sample of the boards. The results of the dye and pry analysis could then be used to determine which of the remaining parts/boards should be targeted for cross-sectional analysis and possibly scanning electron microscopy to characterize the damage.

TABLE OF CONTENTS

1.	EXCERPT FROM PROJECT DOCUMENT (NASA-DOD LFEP_JTP_SEPT-2009.DOC)	7
1.1	Drop Testing	7
1.1	1.1 Test Description	
1.1	1.2 Drop Test Rationale	8
1.1	1.3 Drop Test Resistance Monitoring	8
2.	PRODUCT INFORMATION	11
3.	TEST SPECIFICATIONS	11
4.	INSTRUMENTATION	11
т.	THO TRUME THE TAIL THE THE TAIL THE TAI	
5.	ANALYSTS	11
6.	DROP SHOCK TEST	12
6.1	SUMMARY OF DROP TESTING – SHOCK FORCES	13
6.1	1.1 Set 1: cards 144, 159, 185	13
6.1	1.2 Set 2: cards 26, 146, 187	14
6.1	1.3 Set 3: cards 59, 147, 188	15
	1.4 Set 4: cards 28, 77, 145	15
6.1	1.5 Set 5: cards 25, 92, 186	
6.1	1.6 Set 6: cards 29, 148, 184	17
6.1	1.7 Set 7: cards 27, 58	18
7.	PRINCIPAL STRAIN	19
7.1	STRAIN GAUGE ATTACHMENT	
7.2	STRAIN SYSTEM AND TEST PROCEDURE	
7.3	PRINCIPAL STRAIN SUMMARY: CARD 159 (DROP SET 1)	
7.4	PRINCIPAL STRAIN SUMMARY: CARD 187 (DROP SET 2)	
7.5	PRINCIPAL STRAIN SUMMARY: CARD 25 (DROP SET 5)	
7.6	PRINCIPAL STRAIN SUMMARY: CARD 148 (DROP SET 6)	
7.7	PRINCIPAL STRAIN SUMMARY: CARD 58 (DROP SET 7)	
8.	COMPONENT RESISTANCE	
8.1	EVENT DETECTOR	
8.2	RESISTANCE MEASUREMENT PROCEDURE	
8.3	INDIVIDUAL COMPONENT OBSERVATIONS:	
8.3	I.	
	3.2 Component CABGA-100	
	3.3 Component TQFP-144	
	3.4 Component TSOP-50	
	3.5 Component CLCC-20	
8.3	3.6 Component QFN-20	46
9.	CONTRACTUAL STATEMENTS	48
10.	APPENDIX A: TEST SETUP PHOTOS	49

PERFORMANCE INNOVATION LABORATORIES

NASA Drop Testing

10.1	TEST FIXTURES	49
10.2	SHOCK TABLE: DROP HEIGHT	50
10.3	ACCELEROMETER LOCATION	51
10.4	STRAIN WIRED TEST VEHICLE	52
11.	APPENDIX B: DROP TESTING GRAPHS	53
11.1	SET 1 – CARD 144, 159, 185	53
11.2	SET 2 - CARD 26, 146, 187 (STRAIN GAUGED)	73
11.3	SET 3 – CARD 59, 147, 188	94
11.4	SET 4 – CARD 28, 77, 145	114
11.5	SET 5 – CARD 25 (STRAIN GAUGED), 92, 186	134
11.6	SET 6 – CARD 29, 148 (STRAIN GAUGED), 184	154
11.7	Set 7 – Card 27, 58 (strain gauged)	174
12.	APPENDIX C: STRAIN VS TIME	194
12.1	Set 1 – Card 159	194
12.2	SET 2 – CARD 187	204
12.3	SET 5 – CARD 25	214
12.4	Set 6 – Card 148	224
12.5	Set 7 – Card 58	234
13.	EVENT DETECTOR DATA	244
13.1	SET 1	244
13.2	SET 2	244
13.3	SET 3	244
13.4	SET 4	244
13.5	SET 5	244
13.6	SET 6	245
13.7	SET 7	245

1. EXCERPT FROM PROJECT DOCUMENT (NASA-DoD LFEP_JTP_Sept-2009.doc)

1.1 Drop Testing

1.1.1 Test Description

This test determines the resistance of board level interconnects to board strain induced by dynamic bending as a result of drop testing. Boards tested using this method typically fail either as interfacial fractures in the solder joint (most common with ENIG) or as pad cratering in the component substrate and/or board laminate (see Figure 1). These failure modes commonly occur during manufacturing, electrical testing (especially in-circuit test), card handling and field installation. The root cause of these types of failures are typically a combination of excessive applied strain due to process issues and/or or weak interconnects due to process issues and/or the quality of incoming components and/or boards.

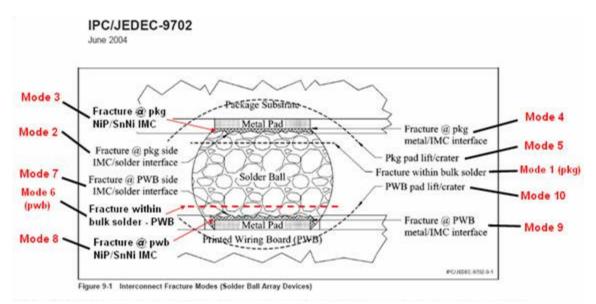


Figure 1: Interconnect Fracture Modes (Solder Ball Array Device) IPC 9702.

This board-level drop test is based on the JEDEC Standard JESD22-B110A known as Subassembly Mechanical Shock as well as insight gained by Celestica after performing numerous drop tests.

The drop test process can identify design, process, and raw material related problems in a much shorter time frame than other development tests. In this project, the drop test will determine the operation and strain endurance limits of the solder alloys and interconnects by subjecting the test vehicles to accelerated environments. The limits identified in drop testing will be used to compare performance differences in the lead-free test alloys and mixed solder joints vs. the baseline standard SnPb (63/37) alloy. The primary accelerated environments are strain and strain rate.

This report strain not be reproduced except in fall without the written consent of the laboratory and product owner

1.1.2 Drop Test Rationale

The Drop Testing will provide a method to identify comparative potential quality and reliability differences in the pure and mixed test alloys vs. the SnPb baseline in a short period of time. Unique to this test will be comparing the interconnect robustness of as-assembled to reworked boards.

1.1.3 Drop Test Resistance Monitoring

24 components will be monitored during the NASA-DoD LFE Project Drop Testing procedure.

Table 1: Components to be Monitored During Drop Testing

Ref-Des	Component	Ref-Des	Component	Ref-Des	Component
U02	BGA-225	U18	BGA-225	U42	CSP-100
U03	TQFP-144	U19	CSP-100	U43	BGA-225
U04	BGA-225	U20	TQFP-144	U44	BGA-225
U05	BGA-225	U21	BGA-225	U50	CSP-100
U06	BGA-225	U24	TSOP-50	U52	CLCC-20
U13	CLCC-20	U25	TSOP-50	U56	BGA-225
U14	CLCC-20	U32	CSP-100	U57	TQFP-144
U15	QFN	U33	CSP-100	U58	TQFP-144

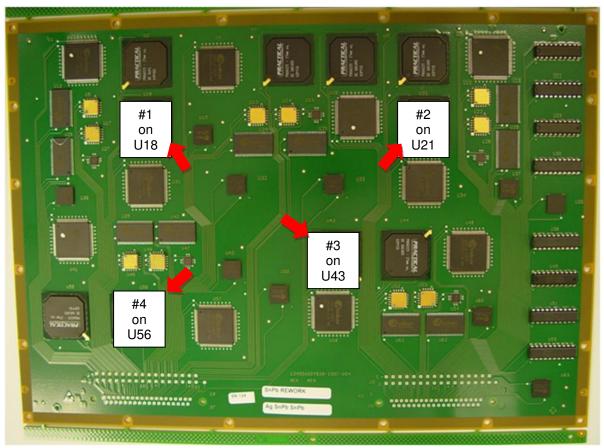


Figure 2: Components Being Electrically Monitored During Drop Testing

Strain Gage

- 4 strain gages on one setup card
- 4 strain gages on one card from each of the 5 cells
- The strain data will only be collected and analyzed on the 1st, 5th and 10th drops

Note: strain gages have been placed at the inner most corners of the largest BGAs these area are expected to see the greatest strains. If set-up testing shows something different, the strain gages can be relocated.

Figure 3: Location of the four triaxial strain gages

Table 2 Drop Test Methodology

Parameters	 Shock testing will be conducted in the -Z direction 500Gpk input, 2ms pulse duration Test vehicles will be dropped until all monitored components fail or 10 drops have been completed 						
Number of Test Vehicles Required							
As Manu	factured		Reworked				
Mfg. SnPb	Mfg. LF	Rwk. SnPb	Rwk. SnPb ENIG	Rwk. LF			
5	5	5 1 5					
Trials per spe	ecimen	A maximum of 10 drops					

2. **PRODUCT INFORMATION**

Products Under Test	Lead-free and Mixed (lead/lead-free) Circuit Board					
	Assemblies					
Quantity Provided	20					
Serial Numbers	Batch A: 184, 185, 186, 187, 188					
	Batch B (Imm. Ag): 144,145, 146, 147, 148					
	Batch B (ENIG): 159					
	Batch D: 25, 26, 27, 28, 29					
	Batch F (Imm. Ag): 58, 59, 77, 92					

TEST SPECIFICATIONS 3.

Name	Reference #	Level/Control
LFE DropTest SOW CELESTICA	N/A	August 31, 2007
JEDEC Standard on Subassembly Mechanical	JESD22-	November 2004
Shock	B110A	

INSTRUMENTATION 4.

Description	Serial Number	Calibration Due Date
Lansmont Model 65/81 Shock Table	ST-681- 0062	N/A
Lansmont TP3 Data Collection System	N/A	N/A
Accelerometer: Endevco 2226C	GG11	Aug 20, 2009
Accelerometer: Endevco 2226C	KC88	Jul 29, 2010
Accelerometer: PCB P357C10	13852	Mar 22, 2010
Accelerometer: PCB P357C10	13850	Aug 11, 2010
Accelerometer: Endevco 2222C	BP17	Feb 10, 2010
Accelerometer: Endevco 2222C	27654	Sep 18, 2009
Vishay Measurements 6000 Model 6100	N/A	N/A
Anatech 64 STD (upgraded to 192)	950307-1	Jan 28, 2010

5. **ANALYSTS**

Name	Employee #	Title		
Billy Lee 070096		Process/Test Engineering Specialist		
Russell Brush	07044151	Operations Engineering Specialist		
Subramaniam Suthakaran	07002151	Engineering Technical Support 3		

6. DROP SHOCK TEST

As requested by NASA, the following shock testing was performed on the test units:

- Shock parameters: 500 G, 2.0 ms duration
- Number of drops per card: 10
- 20 cards in total / 3 cards tested simultaneously per drop for the first 6 sets / 2 cards tested for set 7. See below and Appendix A for test setup photos.
- Each card was monitored with an accelerometer for shock response.
- Each card was monitored in-situ for resistance changes (see section 7 for components and results).
- Cards 25, 58, 148, 159, 187 were also monitored for board strain.

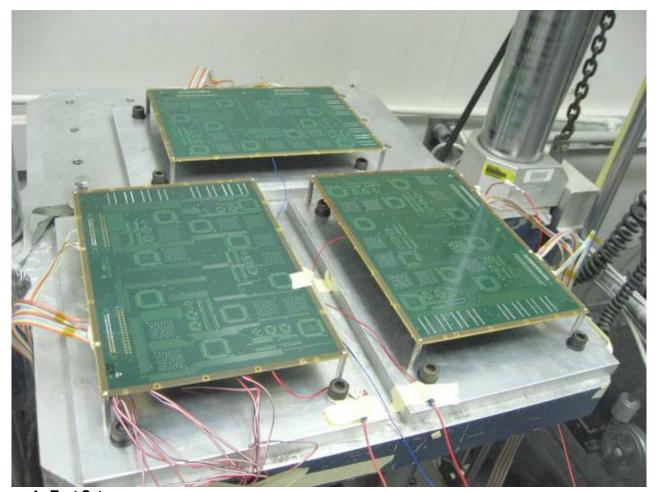


Figure 4: Test Setup.

6.1 Summary of Drop Testing – Shock Forces

The input shocks from the drop table were consistent for all 7 sets, varying on average less than 2% under and 5% over 500G. The duration for each drop was also very consistent with a minimum of 1.88ms and a maximum of 2.02ms. See the following tables for details.

6.1.1 Set 1: cards 144, 159, 185

	Tal	ble	Card 144		Card 185		Card 159 (strain gauged)	
Drop	G's	ms	G's	ms	G's	ms	G's	ms
1	495	1.98	n/a	n/a	n/a	n/a	n/a	n/a
2	494	1.98	2348	0.50	5144	0.48	215	9.48
3	497	1.98	2324	0.50	5958	0.46	1936	1.98
4	491	2.00	2152	0.48	5836	0.46	2033	1.38
5	500	1.96	34	0.54	5853	0.48	1982	1.42
6	490	1.98	31	0.58	5778	0.48	1966	1.42
7	492	1.98	1593	0.52	1410	0.70	1378	0.66
8	492	1.98	1516	0.52	1364	0.68	1324	0.64
9	501	1.96	1385	0.54	1346	0.66	1273	0.58
10	492	1.98	1469	0.52	1357	0.64	2364	0.32

The following notes were taken during the drop testing. See Appendix B for response graphs.

Drop	Card	Issue	Notes / Action Taken		
1	all	No G values recorded	Channels for the three cards not activated.		
2	159	Low G value recorded	Accelerometer broke off – reattached.		
5	144	Low G value recorded	Checked accelerometer and all cable connections.		
6	144	Low G value recorded	Replaced accelerometer cable; removed center bolts on all three fixtures after it was determined that they were making contact with the cards.		
10	159	Corner of card broke off (screw location)	See photos below.		

CELQ-001-PROC-451 Rev 11

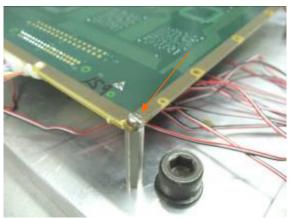


Figure 5: Broken card 159 after drop 10.

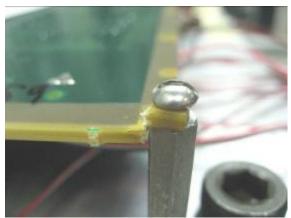


Figure 6: Close up of broken card 159.

6.1.2 Set 2: cards 26, 146, 187

	Table		Card 26		Card 146		Card 187 (strain gauged)	
Drop	G's	ms	G's	ms	G's	ms	G's	ms
1	485	1.96	1186	0.76	1690	0.64	1609	0.86
2	500	1.94	1167	0.76	1529	0.66	1419	0.80
3	499	1.94	1150	0.76	1575	0.64	1881	0.72
4	513	1.94	1149	0.78	1399	0.64	1781	0.72
5	519	1.94	1212	0.76	1547	0.58	1970	0.70
6	514	1.94	1193	0.76	1347	0.70	207	9.18
7	520	1.92	2352	0.36	1358	0.66	1223	0.84
8	519	1.92	2197	1.60	1333	0.68	1616	11.24
9	516	1.94	1223	0.76	2110	0.36	2973	9.22
10	508	1.94	1628	0.20	1468	0.60	1651	0.72

Drop	Card	Issue	Notes / Action Taken				
6	187	Low G value recorded	Checked accelerometer connection; replaced cable.				
7	26	Accelerometer response	Consistent initial response; spike giving higher G's. Checked card on fixture.				
8	26	Accelerometer response Consistent initial response; spike giving I G's. Checked card on fixture.					
	187	Long duration recorded	Checked card on fixture; checked all cable connections.				
9	187	Accelerometer response	Replaced accelerometer BP17 to PCB P357C10, 13850.				

6.1.3 Set 3: cards 59, 147, 188

	Tal	ble	Card 147		Card 59		Card 188	
Drop	G's	ms	G's	ms	G's	ms	G's	Ms
1	503	1.94	1494	0.66	1720	0.70	1578	0.58
2	500	1.94	1249	0.82	1577	0.66	1582	0.56
3	507	1.94	1278	0.80	1454	0.68	1612	0.58
4	506	1.92	1236	0.80	1336	0.70	1627	0.60
5	509	1.94	1230	0.80	1371	0.70	1681	0.58
6	510	1.92	1186	0.78	1385	0.68	1678	0.56
7	512	1.94	1191	0.78	1377	0.68	1769	0.52
8	510	1.92	1155	0.80	1360	0.70	1764	0.54
9	513	1.92	1161	0.78	1352	0.68	1727	0.54
10	513	1.92	1194	0.48	1370	0.68	1838	0.54

See Appendix B for response graphs.

6.1.4 Set 4: cards 28, 77, 145

	Tal	ble	Card 145		Card 77		Card 28	
Drop	G's	ms	G's	ms	G's	ms	G's	Ms
1	497	1.98	1509	2.66	1325	0.66	1485	0.08
2	510	1.96	7	20	1383	0.60	1155	0.58
3	521	1.92	22	20	1314	0.60	1193	0.76
4	517	1.92	1262	0.62	1356	0.62	1127	0.76
5	508	1.94	1279	0.60	1354	0.62	1117	0.78
6	519	1.94	1279	0.62	1284	0.62	1160	0.78
7	514	1.94	1250	0.62	1397	0.60	1070	0.46
8	522	1.90	1268	0.60	1124	0.80	1127	0.78
9	519	1.92	1291	0.60	1271	0.58	1072	0.78
10	494	2.00	1258	0.60	1234	0.62	1013	0.78

The following notes were taken during the drop testing. See Appendix B for response graphs.

Drop	Card	Issue	Notes / Action Taken				
1	145	Long duration recorded	Checked card on fixture.				
	28	Short duration recorded	Checked card on fixture.				
2	145	Low G value recorded	Checked accelerometer and all cable connections.				
3	145	Low G value recorded	Replaced accelerometer BP17 with P357C10, 13850				

CELQ-001-PROC-451 Rev 11

6.1.5 Set 5: cards 25, 92, 186

	Table		Card 25 (strain gauged)		Card 186		Card 92	
Drop	G's	ms	G's	ms	G's	ms	G's	Ms
1	534	1.94	1524	0.70	10045	0.14	1325	0.78
2	532	1.94	1268	0.66	1483	0.56	1180	0.62
3	535	1.92	1301	0.54	1479	0.56	1102	0.80
4	521	1.98	1147	0.66	1460	0.56	2873	0.24
5	537	1.92	1135	0.52	1512	0.56	9804	0.12
6	518	1.98	1142	0.48	1474	0.58	10023	0.18
7	533	1.92	1258	1.14	1396	0.54	1745	0.76
8	538	1.92	1472	1.08	1473	0.54	10163	0.94
9	533	1.92	1220	1.08	1409	0.56	10103	0.14
10	539	1.92	1566	0.96	1499	0.56	n/a	n/a

Drop	Card	Issue	Notes / Action Taken
1	186	High G value recorded	Checked accelerometer and all cable connections.
4	92	Accelerometer response	Consistent initial response; spike giving high G's. Checked card on fixture.
5	92	High G value recorded	Card cracked at mounting location - continued testing.
6	92	High G value recorded	Washer to help secure card.
8	92	High G value recorded	Due to crack in the card.
9	92	High G value recorded	Removed card for last drop.

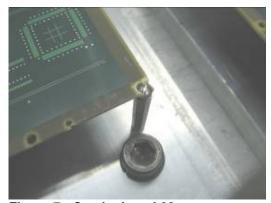


Figure 7: Cracked card 92.



Figure 8: Washer to secure card.

6.1.6 Set 6: cards 29, 148, 184

	Table		Card 148 (strain gauged)		Card 29		Card 184	
Drop	G's	ms	G's	ms	G's	ms	G's	ms
1	532	1.92	1497	0.60	1329	0.76	10083	0.16
2	541	1.92	2845	0.70	1264	0.76	2769	1.38
3	539	1.90	2969	0.60	1262	0.74	1418	1.96
4	531	1.94	3415	0.58	1222	0.74	1506	1.90
5	544	1.90	3515	0.48	1254	0.76	1628	1.98
6	530	1.92	3725	0.48	1236	0.76	1623	1.82
7	539	1.92	4461	0.46	1176	0.76	1880	1.76
8	541	1.88	3981	0.44	1157	0.50	1890	1.76
9	539	1.92	4754	0.44	1161	0.48	3045	0.66
10	540	1.90	1681	9.28	1240	0.56	3109	0.64

Drop	Card	Issue	Notes / Action Taken
1	184	High G value recorded	Checked card in fixture; all cable connections; better secured cable.
2	148, 184	Accelerometer response	Consistent initial response; spike giving higher G's. Checked cards on fixture.
3-8	148	Accelerometer response	Consistent initial response; spike giving higher G's. Checked card on fixture.
9-10	184	Accelerometer response	Consistent initial response; spike giving high G's. Checked card on fixture.
	148	Accelerometer response	Inconsistent readings. Checked accelerometer and all cable connections.

6.1.7 Set 7: cards 27, 58

	Table		Card	27	Card 58 (strain gauged)		
Drop	G's	ms	G's	ms	G's	ms	
1	496	2.00	7	20.00	n/a	n/a	
2	494	2.00	5	20.00	815	0.64	
3	501	1.98	5	20.00	1113	0.78	
4	518	1.96	2308	0.74	1127	0.78	
5	499	1.98	4134	0.16	1047	0.78	
6	502	1.98	10000	0.66	1069	0.78	
7	508	1.96	10003	0.72	1193	1.06	
8	498	2.02	1410	3.50	1230	1.16	
9	517	1.94	10591	8.86	2644	0.82	
10	521	1.96	10588	8.78	3221	0.80	

Drop	Card	Issue	Notes / Action Taken			
1	27, 58	No accelerometer response	Checked accelerometer and all cable			
	27, 30	140 acceleronieter response	connections; checked software setup.			
2	27	No accelerometer response	Checked accelerometer and all cable			
	21	140 acceleronieter response	connections; checked software setup.			
3	27	No accelerometer response	Checked accelerometer and all cable			
	100 accelerometer response		connections – replaced cable.			
4	27	Accelerometer response	Consistent initial response; spike giving high G's.			
	21	Accelerometer response	Checked card on fixture.			
5	27	Accelerometer response	Consistent initial response; spike giving high G's.			
6	27	Accelerometer response	Inconsistent readings. Checked accelerometer			
	21	Accelerometer response	and all cable connections.			
7	27	Accelerometer response	Inconsistent readings. Changed accelerometer			
	21	Accelerometer response	to PCB P357C10, 13850.			
8	27, 58	Accelerometer response	Consistent initial response; spike giving high G's.			
9	27, 58	Accelerometer response	Consistent initial response; spike giving high G's.			
10	27, 58	Accelerometer response	Consistent initial response; spike giving high G's.			

7. PRINCIPAL STRAIN

7.1 Strain Gauge Attachment

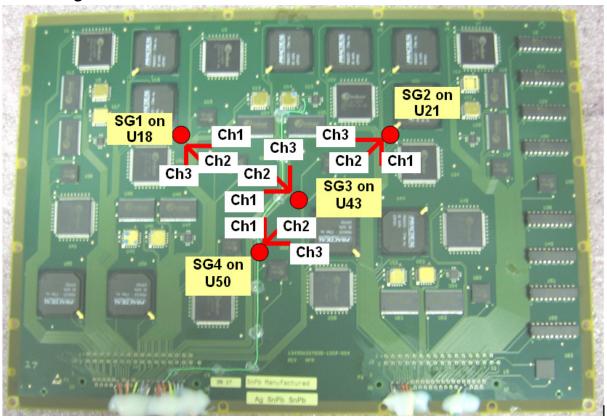


Figure 9: Strain Gauge Attachment

Cards 159, 187, 25, 148 and 58 were dropped with shock, resistance and strain monitoring. Four rosette strain gauges were attached on each board and the strain gauges locations are given above. Each strain gauge has 3 channels and the principal strain was calculated using the strain reading from these channels.

7.2 Strain System and Test Procedure

A Vishay Measurements group system 6000 Model 6100 was used for the strain measurements. After strain gage attachment the test boards were mounted on the drop test fixtures (upside down) which were bolted to the drop table. All four strain gauges were linked to the measurement system by using 12 adaptors. The boards were then monitored in-situ for strain, shock and resistance during the drop test.

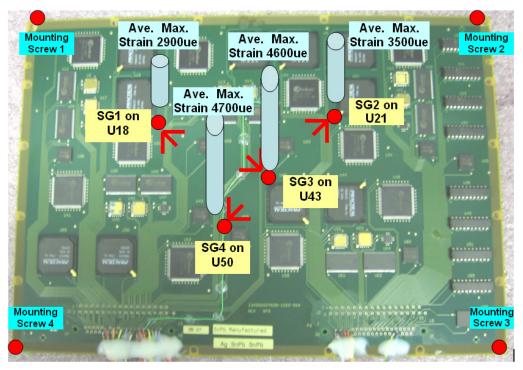


Figure 10: Average Maximum Strain at each Strain Gauge

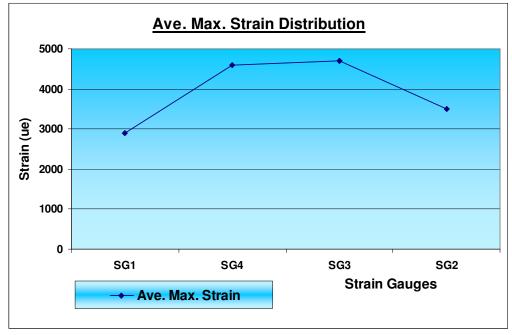


Figure 11: : Average Maximum Strain at each Strain Gauge

CELQ-001-PROC-451 Rev 11

7.3 Principal Strain Summary: card 159 (drop set 1)

		Strain	Gauge 1			Strain (Gauge 2	
	Principa strain1(ı		Principal 2(ue)	strain	Principal strain1(ue)		Principal strain 2(ue)	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 159_500G_1	-432.9	3291.4	-1877.6	1283.0	-259.5	3231.7	-2026.3	549.0
Card 159_500G_2	-467.2	3519.9	-1932.5	1298.0	-218.5	3262.9	-2150.7	546.9
Card 159_500G_3	-543.7	3576.4	-1837.2	1346.9	-205.5	3170.2	-2226.8	610.1
Card 159_500G_4	-547.7	3573.1	-1748.0	1335.3	-199.2	3227.9	-2030.7	610.3
Card 159_500G_5	-462.2	3570.6	-1725.9	1293.5	-197.6	3261.7	-2113.8	612.6
Card 159_500G_6	-456.0	3530.1	-1879.4	1275.6	-207.2	3206.2	-1940.7	603.8
Card 159_500G_7	-680.2	2684.4	-1848.0	714.7	-175.0	3169.1	-1729.1	355.8
Card 159_500G_8	-747.3	2790.0	-1940.5	818.9	-183.4	3323.6	-1835.0	447.3
Card 159_500G_9	-617.7	2951.2	-1615.8	903.8	-179.6	3410.2	-1662.4	429.4
Card 159_500G_10	-333.7	2842.1	-1530.5	1223.5	-168.1	2909.5	-1788.3	550.1

		Strain (Gauge 3			Strain (Gauge 4	
	•	Principal strain1(ue)		Principal strain 2(ue)		Principal strain1(ue)		strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 159_500G_1	-370.4	3608.5	-2522.2	864.5	1188.2	4685.6	-3491.2	-758.0
Card 159_500G_2	-484.8	3258.2	-3193.1	857.7	-141.8	3937.3	-2289.9	525.3
Card 159_500G_3	-401.0	3381.2	-3157.4	822.8	-184.6	3910.1	-2152.4	509.4
Card 159_500G_4	-410.6	3263.4	-2927.6	828.4	-200.4	4001.5	-2196.0	493.4
Card 159_500G_5	-384.1	3255.3	-3052.1	823.4	-208.8	3948.3	-2160.1	507.6
Card 159_500G_6	-310.6	3177.9	-2916.7	758.8	-202.0	3977.7	-2230.2	492.0
Card 159_500G_7	-227.1	4530.5	-2198.6	851.7	-125.9	4521.5	-2267.2	512.8
Card 159_500G_8	-137.5	4714.5	-2342.3	834.5	-97.1	4758.6	-2391.8	509.5
Card 159_500G_9	-246.7	4829.5	-2481.6	758.6	-107.7	4794.8	-2559.5	503.4
Card 159_500G_10	-144.8	4279.2	-1528.3	892.6	-80.3	4056.9	-1966.9	557.0

7.4 Principal Strain Summary: card 187 (drop set 2)

		Strain (Gauge 1			Strain (Gauge 2	
	Principa strain1(u		Principal : 2(ue)	strain	Principa strain1(ı		Principal 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 187_500G_1	-319.9	2978.2	-2087.2	415.6	-250.9	3255.5	-1811.3	584.5
Card 187_500G_2	-355.7	2780.5	-1985.4	357.5	-255.6	3374.2	-1848.3	560.3
Card 187_500G_3	-331.2	2815.1	-1627.4	366.2	-273.4	3423.0	-1696.5	436.6
Card 187_500G_4	-369.4	2772.8	-2142.4	386.7	-267.5	3423.2	-1948.7	395.7
Card 187_500G_5	-327.1	2811.0	-1936.5	367.4	-292.0	3535.5	-1861.0	438.2
Card 187_500G_6	-341.7	2856.9	-1906.2	351.3	-325.6	3494.4	-1940.5	344.0
Card 187_500G_7	-362.3	2793.1	-2390.1	326.6	-310.2	3519.8	-2046.1	381.3
Card 187_500G_8	-414.8	2859.9	-2359.7	324.2	-305.7	3555.3	-1955.6	459.7
Card 187_500G_9	-362.3	2822.0	-2326.8	338.7	-334.6	3590.8	-1987.5	385.7
Card 187_500G_10	-375.5	2840.4	-2392.9	330.8	-297.3	3558.0	-1975.7	447.9

		Strain (Gauge 3			Strain (Gauge 4	
	Principa strain1(u		Principal : 2(ue)	strain	Principa strain1(ı		Principal 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 187_500G_1	-145.5	4558.2	-2071.2	835.3	-117.2	4768.1	-2133.1	501.7
Card 187_500G_2	-153.2	4629.9	-2400.5	754.7	-135.6	4778.5	-2504.0	527.1
Card 187_500G_3	-153.1	4631.3	-2301.7	755.2	-109.0	4869.4	-2448.1	499.0
Card 187_500G_4	-164.5	4611.8	-2401.6	612.6	-133.6	4801.2	-2481.5	506.7
Card 187_500G_5	-163.5	4732.3	-2356.9	640.5	-117.3	5003.2	-2436.4	518.7
Card 187_500G_6	-153.2	4636.7	-2366.0	660.5	-117.0	5024.3	-2429.6	534.5
Card 187_500G_7	-197.4	4608.6	-2116.9	700.2	-160.7	4854.4	-2190.0	545.5
Card 187_500G_8	-136.8	4613.1	-2159.9	558.2	-135.9	4897.6	-2230.2	545.9
Card 187_500G_9	-158.5	4591.1	-2192.4	620.2	-133.8	4844.1	-2286.7	547.0
Card 187_500G_10	-145.4	4541.6	-2235.3	596.1	-153.0	4889.4	-2269.0	534.8

This report shall not be reproduced except in full without the written consent of the laboratory and product owner CELQ-001-PROC-451 Rev 11

7.5 Principal Strain Summary: card 25 (drop set 5)

		Strain (Gauge 1			Strain (Gauge 2	Max. 513.6 418.2 356.9 387.0 405.6 402.6	
	Principa strain1(ı		Principal : 2(ue)	strain	Principa strain1(ı		Principal : 2(ue)	strain	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Card 25_500G_1	n/m	n/m	n/m	n/m	-170.4	3307.0	-1670.8	513.6	
Card 25_500G_2	n/m	n/m	n/m	n/m	-189.9	3451.9	-1850.4	418.2	
Card 25_500G_3	n/m	n/m	n/m	n/m	-171.3	3332.8	-1788.7	356.9	
Card 25_500G_4	-346.1	2775.2	-1814.4	449.5	-213.6	3416.7	-1975.2	387.0	
Card 25_500G_5	-333.9	2842.8	-1862.0	482.1	-199.6	3570.0	-2001.2	405.6	
Card 25_500G_6	-341.0	2866.7	-1867.1	509.1	-197.9	3564.3	-2047.9	402.6	
Card 25_500G_7	-370.5	2909.0	-2002.3	554.1	-228.2	3665.1	-1942.0	442.0	
Card 25_500G_8	-351.6	2932.8	-1854.4	484.7	-196.1	3823.1	-1770.9	451.7	
Card 25_500G_9	-376.5	2933.9	-1919.1	495.9	-227.2	3831.9	-1754.7	425.9	
Card 25_500G_10	-379.8	2847.9	-1801.9	496.4	-206.6	4273.2	-1743.3	425.8	

n/m: Not measured. One of the 3 channels of strain gauge1 had false reading, so that the principal strain couldn't be calculated.

		Strain (Gauge 3			Strain (Gauge 4	
	Principa strain1(u		Principal 2(ue)	strain	Principa strain1(u		Principal : 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 25_500G_1	-146.6	4678.5	-2076.6	907.2	-132.8	4935.2	-2345.9	619.6
Card 25_500G_2	-159.8	4905.2	-2316.3	831.6	-153.4	5148.0	-2525.3	576.0
Card 25_500G_3	-170.2	4874.3	-2315.3	816.2	-297.4	5075.1	-2560.4	459.3
Card 25_500G_4	-165.2	4931.7	-2480.8	779.0	-237.5	5081.2	-2694.6	519.1
Card 25_500G_5	-141.0	4826.6	-2524.7	782.2	-210.9	5024.4	-2750.5	608.9
Card 25_500G_6	-218.8	4792.4	-2574.9	770.8	-188.4	5134.0	-2795.2	747.6
Card 25_500G_7	-134.0	4569.0	-2413.0	800.0	-135.8	4968.0	-2584.3	463.1
Card 25_500G_8	-133.4	4396.0	-2312.5	794.1	-194.0	4885.4	-2485.0	474.5
Card 25_500G_9	-202.1	4341.4	-2282.4	765.5	-215.3	4758.1	-2486.6	626.7
Card 25_500G_10	-190.2	4263.2	-2239.8	779.0	-185.9	4808.5	-2406.2	531.5

7.6 Principal Strain Summary: card 148 (drop set 6)

		Strain (Gauge 1			Strain (Gauge 2	
	Principa strain1(u		Principal : 2(ue)	strain	Principa strain1(ı		Principal 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 148_500G_1	-395.7	2801.0	-1824.4	484.6	-224.5	3303.8	-1722.4	409.1
Card 148_500G_2	-442.4	3038.6	-1887.7	449.5	-264.1	3381.1	-1890.2	380.3
Card 148_500G_3	-427.2	3058.8	-1765.7	453.1	-293.1	3449.2	-1910.8	447.0
Card 148_500G_4	-434.3	3174.9	-1700.3	421.8	-293.8	3590.5	-1929.3	309.3
Card 148_500G_5	-408.9	3281.9	-1744.5	455.3	-261.7	3643.1	-1913.6	316.5
Card 148_500G_6	-419.8	3258.2	-1726.9	432.7	-272.4	3608.0	-1927.5	372.2
Card 148_500G_7	-438.2	3330.3	-1720.6	442.2	-251.5	3598.0	-1905.6	391.5
Card 148_500G_8	-486.0	3295.0	-1756.1	453.5	-233.0	3575.2	-1938.2	337.8
Card 148_500G_9	-483.6	3321.5	-1742.7	433.4	-288.0	3607.3	-1945.0	394.0
Card 148_500G_10	-408.9	3392.0	-1824.6	454.3	-279.2	3705.9	-1931.5	295.5

		Strain (Gauge 3			Strain (Gauge 4	
	Principa strain1(ı		Principal : 2(ue)	strain	Principa strain1(u		Principal : 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 148_500G_1	-143.6	4738.8	-2201.9	552.3	-142.0	4216.1	-1890.6	793.4
Card 148_500G_2	-134.5	4766.0	-2372.6	542.6	-134.1	4088.0	-1975.9	698.0
Card 148_500G_3	-128.4	4836.0	-2417.2	578.0	-131.9	4121.3	-2010.8	691.1
Card 148_500G_4	-137.0	4814.0	-2442.2	581.6	-158.3	4168.6	-2056.2	672.0
Card 148_500G_5	-182.4	5031.9	-2437.9	618.4	-182.7	4272.9	-2098.0	670.7
Card 148_500G_6	-217.5	4946.8	-2441.6	638.4	-187.6	4206.1	-2128.2	655.6
Card 148_500G_7	-228.8	4871.7	-2326.3	654.6	-186.4	4232.3	-2034.7	664.6
Card 148_500G_8	-225.2	5012.5	-2221.1	657.1	-164.3	4175.2	-1988.1	661.9
Card 148_500G_9	-260.4	4987.1	-2200.9	642.9	-171.8	4112.7	-1993.3	661.1
Card 148_500G_10	-211.7	4894.0	-2432.1	620.4	-209.1	4029.1	-2180.3	654.5

7.7 Principal Strain Summary: card 58 (drop set 7)

		Strain (Gauge 1			Strain (Gauge 2	
	Principa strain1(u		Principal : 2(ue)	strain	Principa strain1(ı		Principal 2(ue)	strain
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Card 58_500G_1	-355.2	2342.4	-1557.5	409.8	-285.9	3546.2	-2050.9	507.9
Card 58_500G_2	-359.9	2368.6	-1714.7	399.4	-338.0	3769.3	-2321.3	516.2
Card 58_500G_3	-353.7	2387.9	-1740.0	391.8	-340.2	3792.0	-2408.0	501.3
Card 58_500G_4	-367.3	2425.0	-1793.2	389.2	-361.7	3820.0	-2471.1	481.4
Card 58_500G_5	-387.9	2444.7	-1822.8	377.0	-375.9	3916.7	-2471.6	493.9
Card 58_500G_6	-393.4	2477.7	-1906.1	350.0	-356.7	3896.4	-2516.4	495.7
Card 58_500G_7	-369.8	2500.5	-1791.5	336.5	-394.1	4037.9	-2361.2	453.4
Card 58_500G_8	-410.5	2542.9	-1689.2	310.0	-434.2	3945.2	-2192.1	454.3
Card 58_500G_9	-358.9	2556.7	-1672.3	365.6	-398.7	4100.2	-2173.1	483.9
Card 58_500G_10	-375.1	2584.6	-1923.1	344.1	-396.8	4183.9	-2559.4	450.5

Max. 568.3
568.3
534 1
,
534.8
527.0
194.4
514.9
528.6
517.1
525.1
544.9

This report shall not be reproduced except in full without the written consent of the laboratory and product owner CELQ-001-PROC-451 Rev 11

8. COMPONENT RESISTANCE

8.1 Event Detector

At the Customer's request, only 24 of the 63 components on each board were monitored using an Event Detector. Twenty boards in total were dropped. Each drop set included three boards (only two boards on the last drop). The Event Detector was set to record data in 1 minute cycles, recording 30 times per cycle. Thus, the Event Detector polled for events every 2 seconds. The Event Detector failure threshold was set to 300 ohms. The maximum occurrence limit was NOT selected. As a result, this generated a maximum of 15 failure readings for each cycle. Due to a board fabrication/design error, a wire-add was soldered onto the board to complete the U15 net. An image of the wiring can be seen in Figure 12 below.

Figure 12: Image of wiring connections to the event detector.

8.2 Resistance Measurement Procedure

The boards were attached to the drop table and connected to the Event Detector. A half-inch braided strap was connected to the Table, Event Detector and Strain monitoring system ground connections. The table was raised and the Accelerometer, Strain and Event Detector systems started. The Event Detector was operating one cycle at a time, to correspond with the drop count. The table was then dropped. Any component failures recorded by the Event Detector were hand measured using a digital multi-meter to confirm the failure. When possible the failure locations were isolated. The failure point was determined based on when the event detector recorded an event and when during verification the component resistance increased by more than 0.2 ohms from the initial measurement. Based on this failure definition, it is possible that the boards experienced a pad crater fault which although detected by the event detector did not result in a resistance increase at steady state and as such was ignored.

8.3 Individual Component Observations:

Interpretation notes for the data tables:

- All green shaded cells marked with 11's imply that the part survived 10 drops.
- All red shaded cells marked with numbers imply that the part was confirmed failed at the drop number listed.
- The blue shaded cells marked with 9's imply that the part survived 9 drops. The 10th drop was cancelled because the tooling holes in the card failed.
- The grey shaded cells with no number imply that the part is shown in a different section, i.e. As assembled, rework x1, rework x2, rework x3 or was a time zero fail.
- The purple shaded cell marked with an 11 was a TSOP-50 time zero failure (pins 25-26 open). The rest of the leads survived 10 drops.

8.3.1 Component BGA-225

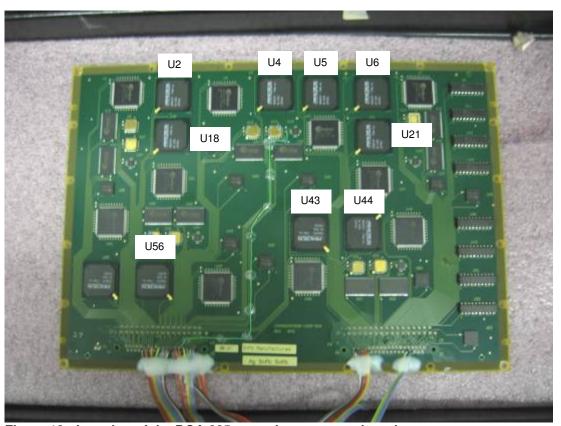


Figure 13: Location of the BGA-225 parts that were monitored.

This report shall not be reproduced except in full without the written consent of the laboratory and product owner CELQ-001-PROC-451 Rev 11

	I.	able 7.3 : Record of drops to failure for the BGA-225, as assen								
		U2	U4	U5	U6	U18	U21	U43	U44	U56
		11	6	4	4	11	6	8	11	11
		11	5	3	3	11	5	6	11	11
	Q	10	5	3	3	11	4	6	11	11
	пР	10	5	3	3	10	3	5	11	10
	ImmAg-SnPb	8	5	3	2	5	3	5	10	8
	٦Ą		5	3					8	
	ш		4	3 2					7	
	_		4	2					7	
			2	2 2					4	
8			1						3	
As Assembled		11	6	4	3	11	9	7	11	11
sen	2	11	5	4	3	11	5	6	11	10
Ase	230	9	5	3	3	11	4	5	11	9 7
As.	ImmAg-SAC305	8 7	3	3	2	9	2	4	11	/
`	g-6	/	3	3					9	
	μ		3	2 2 2					8	
	<u> </u>		2 2	2					7	
			2	2					6 6	
			2	۷					O	
	Pb									
	-S-		2	2					2	
	ENIG-SnPb		_	_						
	E									
	ш									

Table 7.2: Record of drops to failure for the BGA-225, Rework x 1 parts.

		U2	U4	U5	U6	U18	U21	U43	U44	U56
	q	11			3	11	5	4		11
	SnF	11			2	11	4	3		10
	^g-6	4			2	5	4	1		10
	ImmAg-SnPb	3			2	4	3	1		7
	ıl	2			1	3	2			
ле	5							3		
×1 tir	C30							3		
Rework x1 time	ImmAg-SAC305							2		
Rew	nmA							2		
	ll							1		
	ENIG-SnPb	6			2	3	5	1		4
	EN							_		

Table 7.3: Record of drops to failure for the BGA-225, Rework x 2 parts.

		U2	U4	U5	U6	U18	U21	U43	U44	U56
Rework x2 times	ImmAg-SnPb									11
rk X	305	3			2	10	5			8
Sewo	ImmAg-SAC305				2	6	2			5
"	-β ∀ υ				2	6	1			
	lmn				2	4				

Table 7.4: Record of drops to failure for the BGA-225, Rework x 3 parts.

		U2	U4	U5	U6	U18	U21	U43	U44	U56
x3 times	ImmAg-SAC305	4			2	3	1			3
Rework	ImmAg-	2					1			

General Observations PBGA-225:

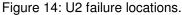

- Most failures occurred on or near the corners.
- Some of the BGAs near the outer edge of the board survived 10 drops.
- The SnPb and SAC305 on ImmAg were similar but the ENIG finish was worse.
- Most rework parts were worse than the as assembled parts.
- The 1, 2, and 3 times reworks appear to fail at the same rate.

Table 7.5: Legend of the PBGA225 failure mappings

Legend	
Code	# Fails
	0
	1-4
	5-8
	9-12
	13-16
	17-20

The following figures show the location of the initial electrical failures for the various PBGA225 components. The diagrams are viewed from the top side of the board with the top of the diagram orientated to the top of the board. The A1 location varies and should be noted.

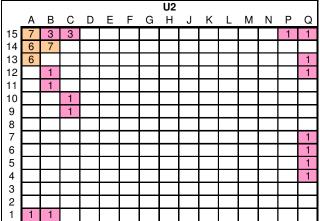


Figure 15: U4 failure locations.

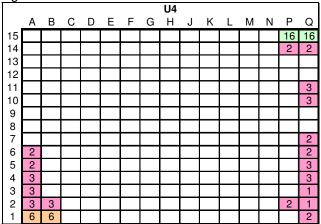


Figure 16: U5 failure locations.

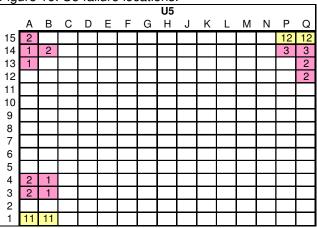


Figure 17: U6 failure locations.

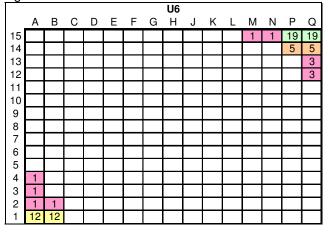


Figure 18: U18 failure locations.

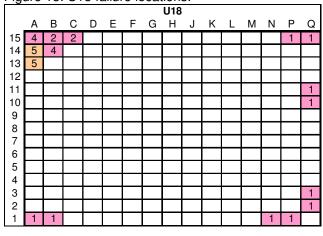


Figure 19: U21 failure locations.

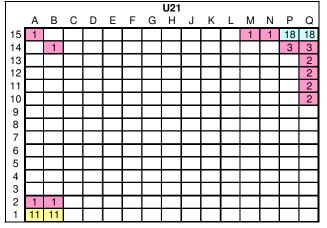


Figure 20: U43 failure locations.

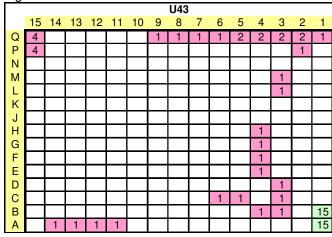


Figure 21: U44 failure locations.

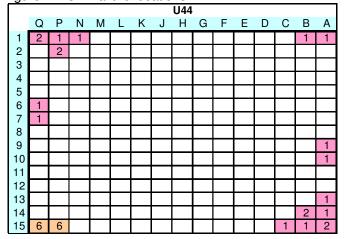


Figure 22: U56 failure locations.

	U56														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Q									1	1	1	1	2	2	5
Р					1	1			1	1	1	1	1	5	2
Ν									1	1	1	1		1	2
М									1	1					
L											1				
Κ										1					1
J															1
Н															1
G															1
F						1						1			
Е					1							1			
D															2
С															2
В		5													2
Α	5	2	2												2

8.3.2 Component CABGA-100

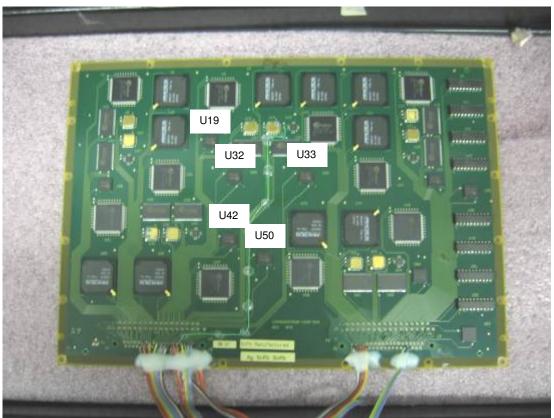


Figure 23: Location of the CABGA-100 parts that were monitored.

The CABGA-100 parts had a design error which resulted in the outside connections of the part being shorted in a parallel configuration. As such the internal nets of the part were not monitored during the test. See Figure 7.13 below.

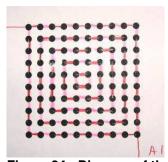


Figure 24: Diagram of the CABGA-100 daisy chain (red ink board trace, pink hi-liter component connection).

IEA
U50
11
11
11
11
11
11
11
11
11
9

Table 7.6: Record of drops to failure for the CABGA-100, as assembled parts.

Table 7.7: Record of drops to failure for the CABGA-100, Rework x1 parts.

		U19	U32	U33	U42	U50
	q	11		11	11	11
	SnF	11		11	11	11
	}-6∖	11		11	11	11
	ImmAg-SnPb	11		11	11	11
	ul	11		11	11	11
ne	5	11		11	11	11
x1 tir	ImmAg-SAC305	11		11	11	11
Rework x1 time		11		11	11	11
Rev	nmA	11		11	11	11
	ıl	11			11	
	ENIG-SnPb	11		11	11	11

Table 7.8 : Record	of drop	os to failure fo	or the CABGA-100	Rework x2 parts.
--------------------	---------	------------------	------------------	------------------

		U19	U32	U33	U42	U50
Rework x2 times	ImmAg-SAC305			11		

General Observations CABGA-100:

- The outside connections of this part were shorted in a parallel configuration. This resulted in the internal nets of the part not being monitored).
- None of the CABGA-100 parts failed during the 10 drops.
- No differences seen between the rework and the as assembled parts.

8.3.3 Component TQFP-144

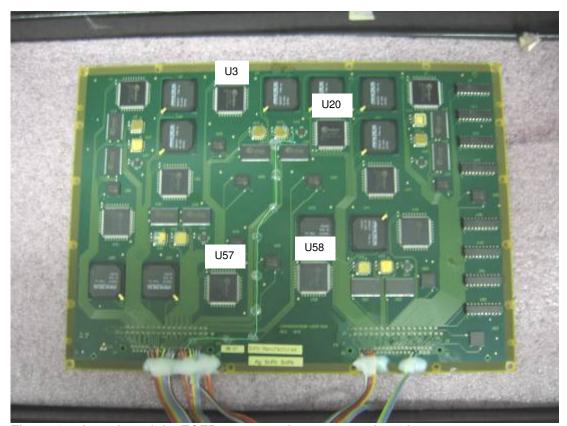


Figure 25: Location of the TQFP-144 parts that were monitored.

CELO-001-PROC-451 Por 11

U3 U20 **U57** U58 ImmAg-SnPb As Assembled ImmAg-SAC305 **ENIG-SnPb**

Table 7.9 : Record of drops to failure for the TQFP-144, as assembled parts.

General Observations TQFP-144:

- The U20 part failed at pins 85-86 (Marked as touch-up).
- All other parts survived the 10 drops.

CELQ-001-PROC-451 Rev 11

8.3.4 Component TSOP-50

Figure 26: Location of the TSOP-50 parts that were monitored.

Table 7.10 : Record of drops to failure for the TSOP-50, as assembled parts.

		U24	U25
	þ	11	11
	ImmAg-SnPb	11	11
	Ag-	11	11
	шш	11	11
		11	11
As Assembled	-SAC305	11	11
Asse		11	11
As /	nAg-	11	9
	Imr	9	
	ENIG-SnPb ImmAg-SAC305	11	11

Table 7.11: Record of drops to failure for the TSOP-50, Rework x1 parts.

		U24	U25							
	,p	11	11							
	SnP	11	11							
	}-6\	11	11							
	ImmAg-SnPb	11	11							
me	п	11	11							
x1 ti	305	11	11							
Rework x1 time		11	11							
Re	SAC	11	11							
	ImmAg-SAC305	11	11							
	lmr	11	11							
			11							

General Observations TSOP-50:

- None of the TSOP-50 parts failed during the 10 drops.
- No differences seen between rework and as assembled parts.

8.3.5 Component CLCC-20

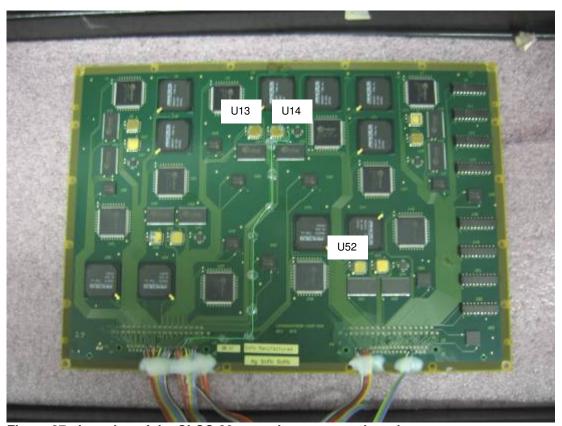


Figure 27: Location of the CLCC-20 parts that were monitored.

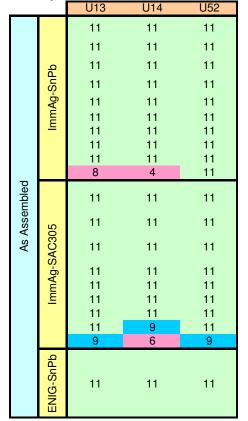


Table 7.12 : Record of drops to failure for the CLCC-20, as assembled parts.

General Observations CLCC-20:

- The U13 parts failed at pins 1-2 [ImmAg-SnPb].
- The U14 parts failed at pins 3-4 [ImmAg-SnPb] and pins 1-2, 3-4, 5-6 [ImmAg-SAC305].

8.3.6 Component QFN-20

Figure 28: Location of the QFN-20 parts that was monitored.

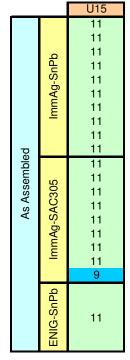


Table 7.13: Record of drops to failure for the QFN-20, as assembled parts.

General Observations QFN-20:

- None of the QFN-20 parts failed during the 10 drops.
- No differences seen between the board and paste types.

Testing Observations

- Setting the Event Detector to match the cycle count to the drop count was very useful in keeping the data aligned.
- It is best to start the event detector and wait about 10 seconds before doing the drop. This should help to eliminate noise/cable issues from the drop failures. Record the time interval that the drop occurred in the test log. If the event detector data shows a failure that matches the time interval when the drop occurred it is most likely a true electrical fail. If the failure is before or after the drop it most likely is noise.
- It is very important to isolate the failures when they occur. This will greatly reduce the amount of Failure Analysis required.
- Care must be taken when attaching the strain gauges. The sanding of the board resulted in broken traces.
- It would be best to connect the cables to the bottom side of the board, as the board is
 placing component side down on the drop table. This will make checking/repairing cable
 failures easier.

9. CONTRACTUAL STATEMENTS

Deviation from the document	ed procedure?	(Yes/No)	<u>Yes</u>

If Yes, state deviation:

Twenty cards were tested instead of twenty-one. Cards 55 and 57 could not be properly secured to the fixture (cards were cut too close to the mounting holes). Card 58 from the same group (Batch F-Imm. Ag) was used as a replacement.

Has any tests or documentation related to this report been subcontracted?

<u>No</u>

If Yes, state work subcontracted:

Results in the report relate only to the item tested.

Tests and measurements stated in this report are performed within the precision of the Standards and Equipment listed.

10. APPENDIX A: Test Setup Photos

10.1 Test Fixtures

Each fixture is made from 3/4" thick Al, with 1-1/2" SS standoffs.

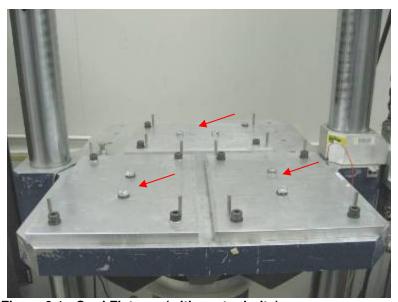


Figure 9.1: Card Fixtures (with center bolts)

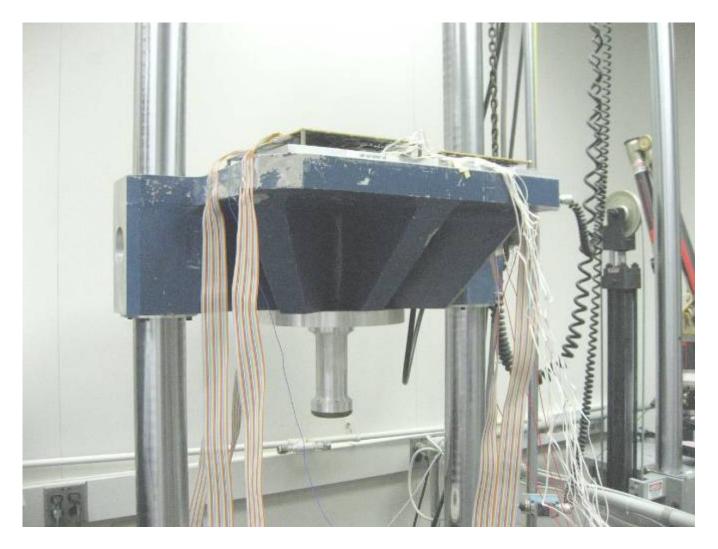
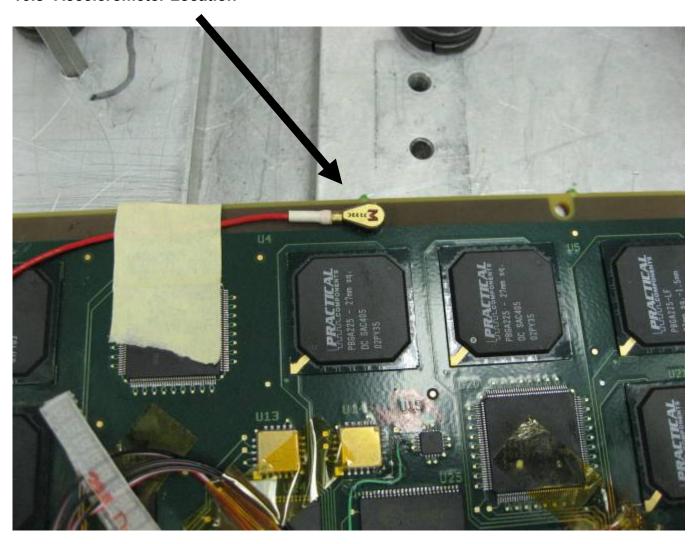
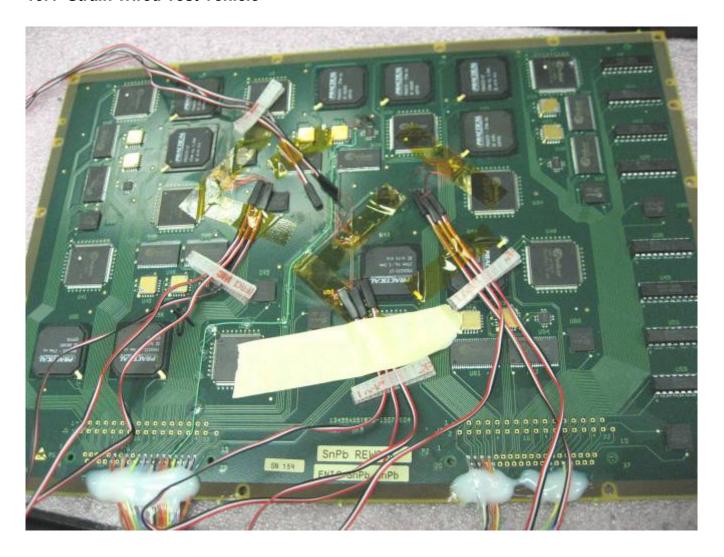

Note: The two center bolts on all three fixtures were removed after drop number 6 on set 1 (cards 144, 159, 185).

Figure 9.2: Card Fixtures (no center bolts)

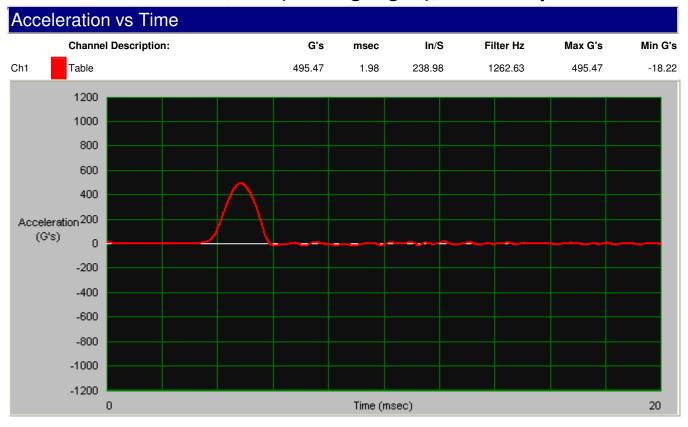


10.2 Shock Table: Drop Height



10.3 Accelerometer Location

10.4 Strain Wired Test Vehicle

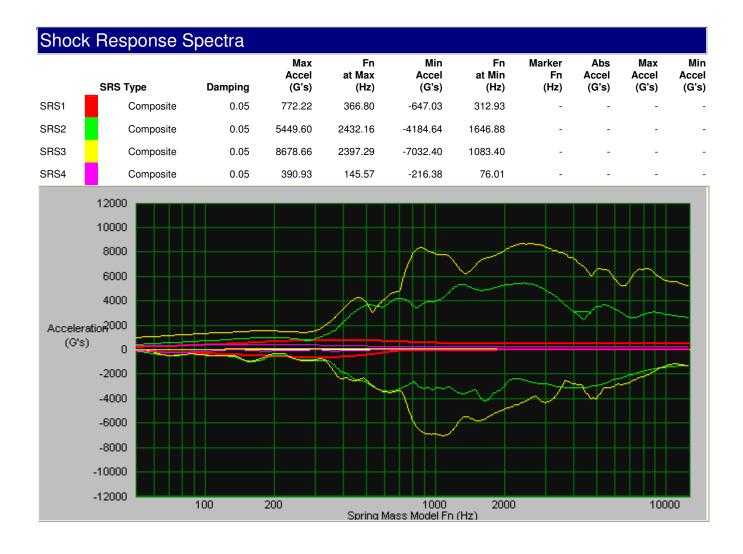


11. APPENDIX B: Drop Testing Graphs

11.1 Set 1 - Card 144, 159, 185

Card 144, 159 (strain gauged), 185 - Drop 1

This report shall not be reproduced except in full without the written consent of the laboratory and produced consent of the laboratory and th



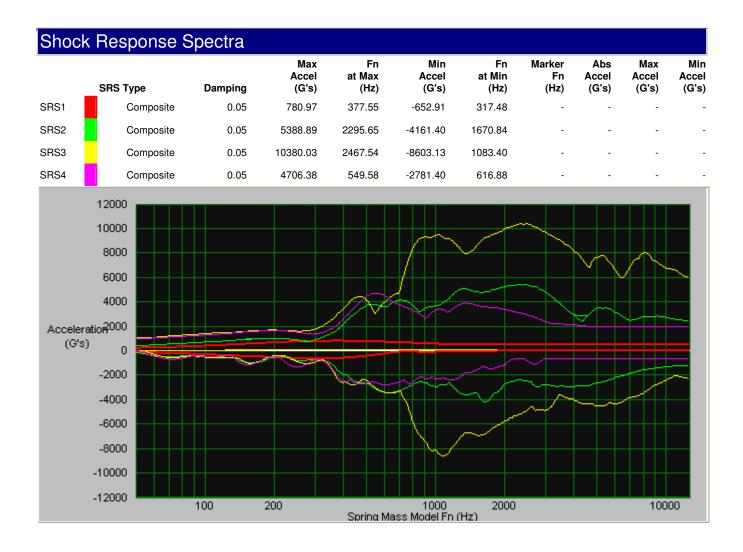
				Juiu		00, 10		i Op Z						
Acce	Acceleration vs Time													
	Channel	Description	n:		G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	Table				1.98	238.70	1262.63	494.29	-17.91				
Ch2	144				2348.19	0.50	305.18	3 2840.91	2348.19	-1328.16				
Ch3	185	185				0.48	484.08	3 4166.67	5144.89	-1195.52				
Ch4	159 (stra	ain gauged)			215.35	9.48	585.85	344.35	215.35	-17.70				
	12000													
	10000													
	8000													
	6000													

20

Acceleration 2000 (G's)

0

0


-2000 -4000 -6000 -8000 -10000 -12000

Card 144, 159, 185 - Drop 3

				Oara	177, 10	,, io	5 D	op o						
Acc	Acceleration vs Time													
	Channel	Descriptio	n:		G's	msec	In/S	Filter H	z Max G's	Min G's				
Ch1	Table				497.82	1.98	239.58	1275.5	1 497.82	-20.23				
Ch2	144				2324.25	0.50	233.23	2717.3	9 2324.25	-1183.71				
Ch3	185				5958.23	0.46	535.53	4310.3	5958.23	-2256.57				
Ch4	159 (stra	in gauged)			1935.78	1.98	735.23	1262.6	1935.78	-641.92				
	12000													
	10000													
	8000													
	6000													
						, l								
	4000													

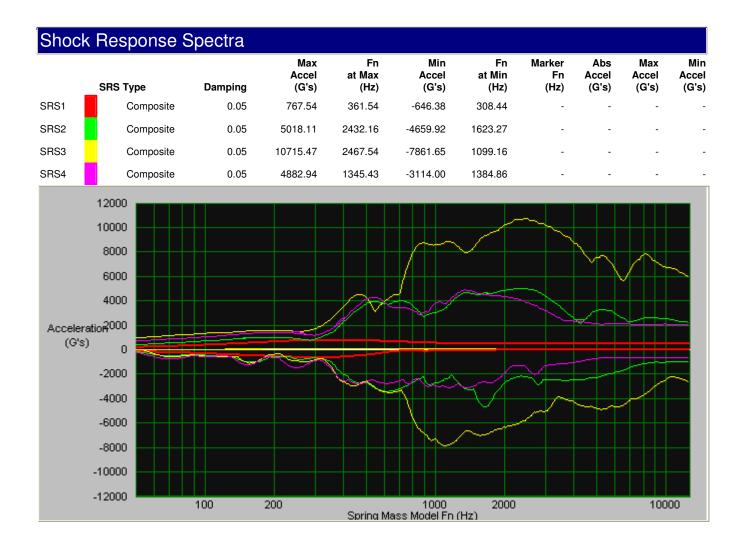
Time (msec)

20

Acceleration 2000 (G's)

0

0


-2000 -4000 -6000 -8000 -10000 -12000

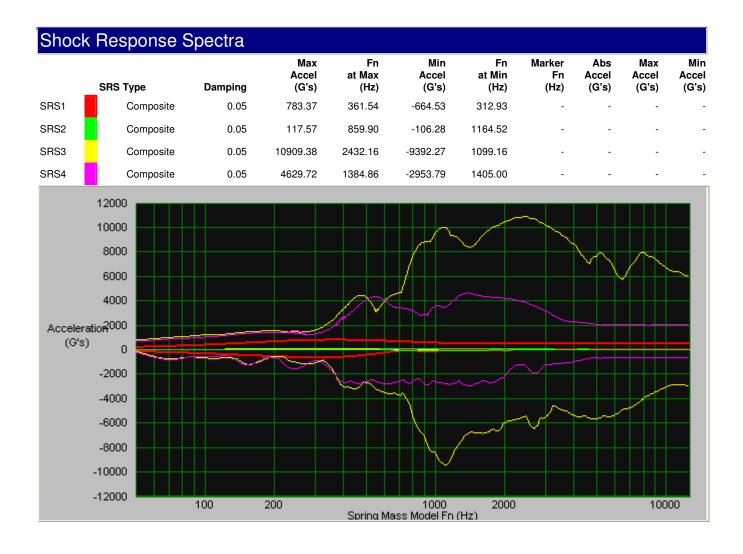
Card 144, 159, 185 - Drop 4

				Caru	177, 1	, ic)J — D	торт						
Acce	Acceleration vs Time													
	Channel	Descriptio	n:		G's	msec	In/S	Filter	Hz Max G'	s Min G's				
Ch1	Table				491.18	2.00	238.58	1262	2.63 491.1	8 -19.37				
Ch2	144				2152.09	0.48	309.61	2500	.00 2152.0	9 -935.09				
Ch3	185				5835.61	0.46	519.65	4310	5835.6	1 -2389.32				
Ch4	159 (stra	in gauged)			2033.08	1.38	510.17	7 1712	2.33 2033.0	8 -642.91				
	12000													
	10000													
	8000													
	6000													
	4000					/								

Time (msec)

20

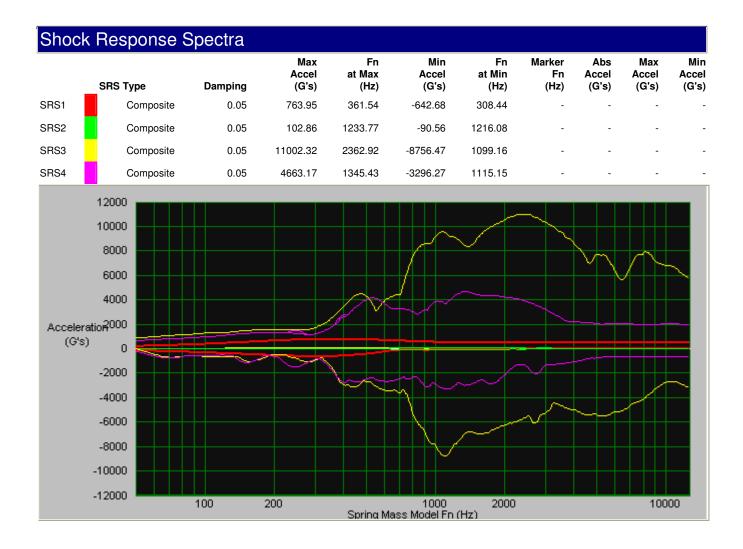
-6000 -8000 -10000 -12000


0

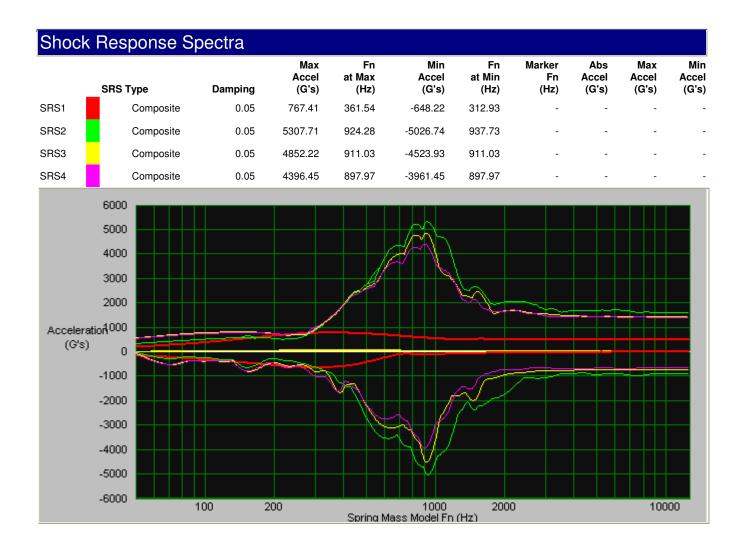
Card 144, 159, 185 - Drop 5

	Card 144, 139, 165 - Drop 3													
Acc	eleratio	on vs Tir	ne											
	Chani	nel Descriptio	n:		G's	msec	In/S	S Filte	er Hz	Max G's	Min G's			
Ch1	Table				500.49	1.96	240.3	2 127	5.51	500.49	-25.10			
Ch2	144				34.38	0.54	4.73	3 446	4.29	34.38	-24.11			
Ch3	185				5852.86	0.48	513.60	6 446	4.29	5852.86	-2922.35			
Ch4	159 (s	train gauged)			1982.30	1.42	508.7	6 168	9.19	1982.30	-665.84			
	12000													
	10000													
	8000													
	6000													
	4000													
Acce	eleration ²⁰⁰⁰													
(0	GleD						pd M	f wor	4	محجم				
	-2000					∀ η '	A.	A ea	~ ~	/				
	-4000					I								

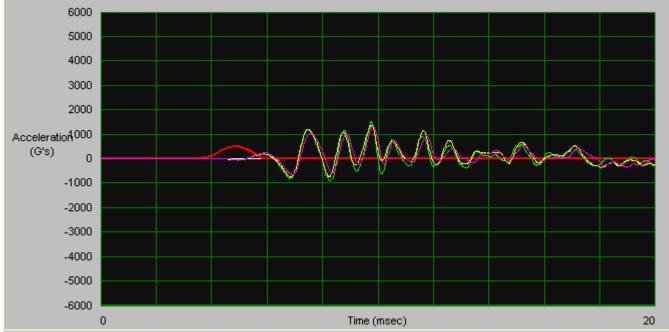
Time (msec)

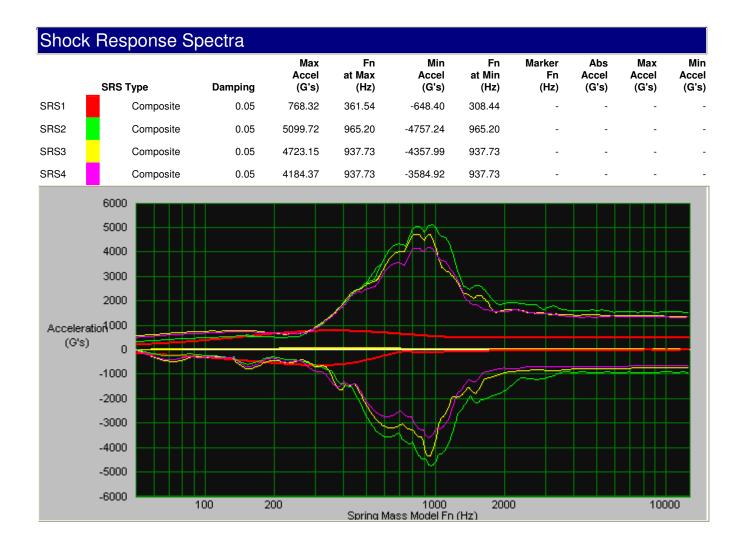


Acceleration vs Time											
	Channel	Description	ո։		G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table				489.84	1.98	237.04	1262.63	489.84	-25.64	
Ch2	144	144			31.27	0.58	4.34	3472.22	31.27	-25.66	
Ch3	185	185			5778.28	0.48	523.31	4310.34	5778.28	-2784.59	
Ch4	159 (stra	159 (strain gauged)			1966.68	1.42	494.31	1689.19	1966.68	-619.85	
	12000										
	10000										
	8000										

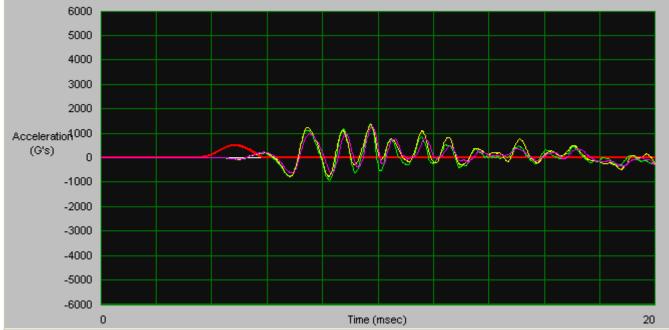


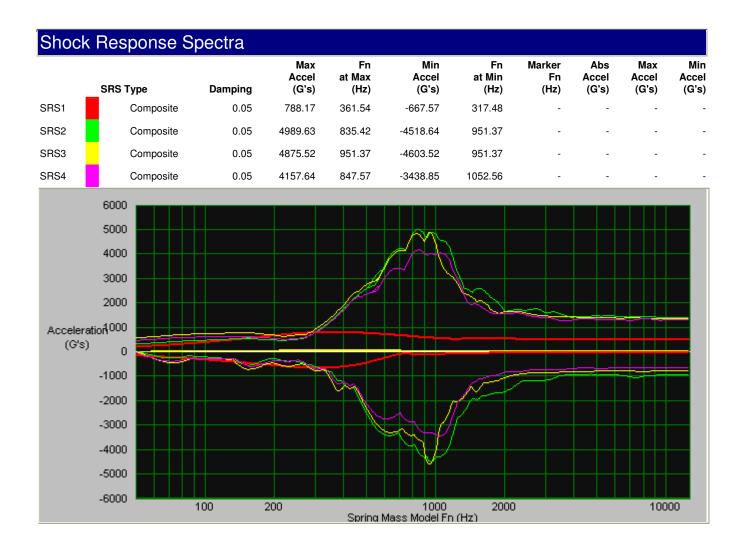
Acceleration vs Time									
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's		
Ch1	Table	492.24	1.98	238.45	1262.63	492.24	-17.42		
Ch2	144	1593.34	0.52	196.75	4464.29	1593.34	-885.83		
Ch3	185	1409.58	0.70	226.35	3205.13	1409.58	-719.57		
Ch4	159 (strain gauged)	1377.81	0.66	215.52	3472.22	1377.81	-660.67		



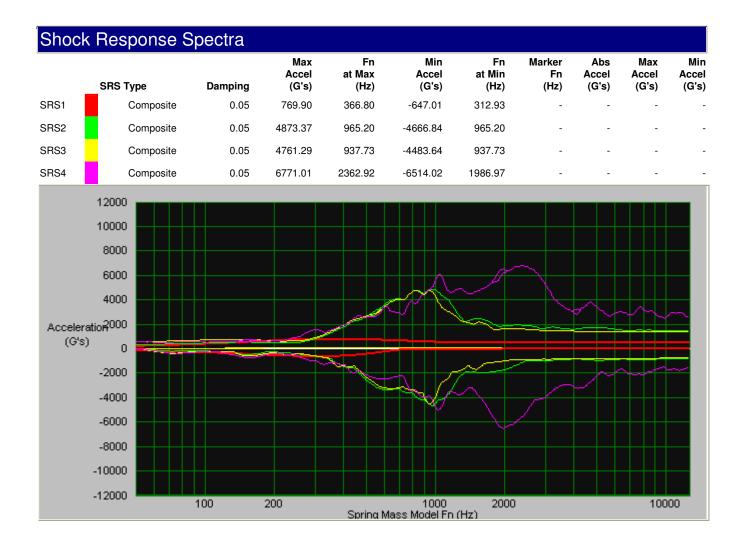


Acceleration vs Time									
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's		
Ch1	Table	492.19	1.98	238.91	1262.63	492.19	-20.08		
Ch2	144	1515.74	0.52	185.87	4464.29	1515.74	-907.04		
Ch3	185	1363.78	0.68	214.18	3289.47	1363.78	-739.18		
Ch4	159 (strain gauged)	1323.71	0.64	205.03	3571.43	1323.71	-655.48		
	6000								

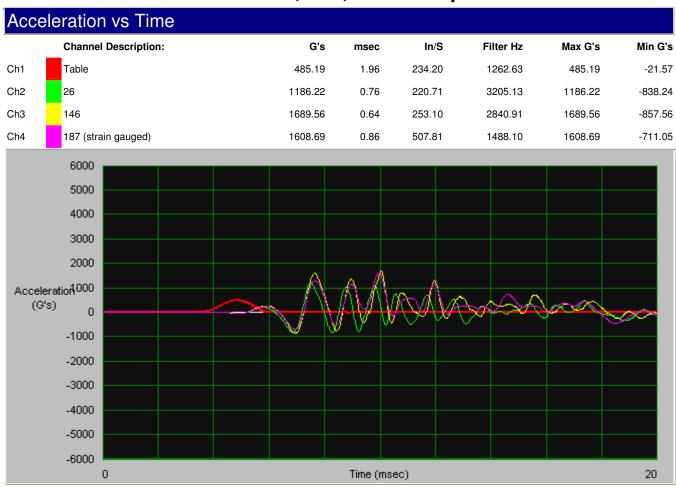


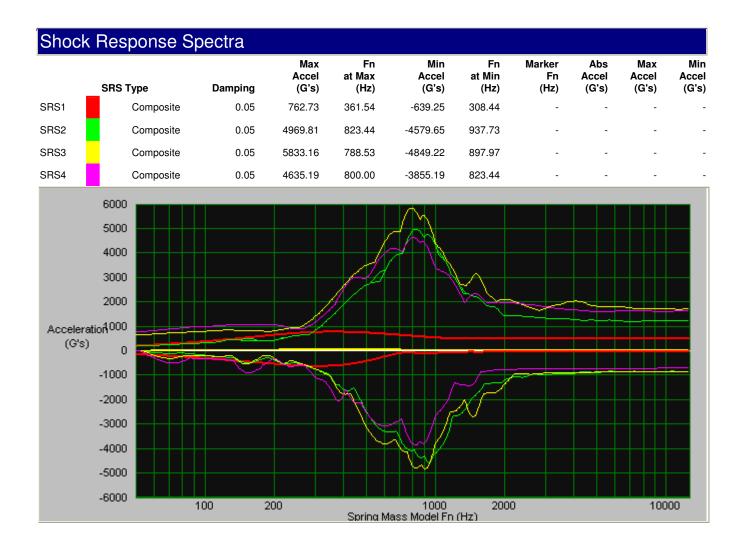


	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's
Ch1	Table	500.74	1.96	240.52	1288.66	500.74	-20.16
Ch2	144	1384.63	0.54	173.36	4464.29	1384.63	-930.25
Ch3	185	1345.54	0.66	208.45	3378.38	1345.54	-772.69
Ch4	159 (strain gauged)	1272.63	0.58	184.02	4032.26	1272.63	-654.63
	6000 6000	1272.00	0.50	10-1.02	+00Z.Z0	12,2.00	

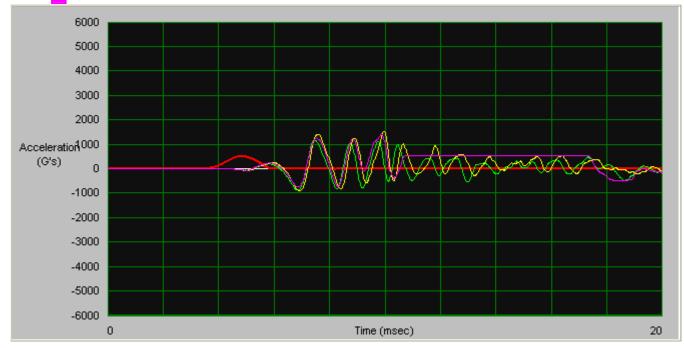


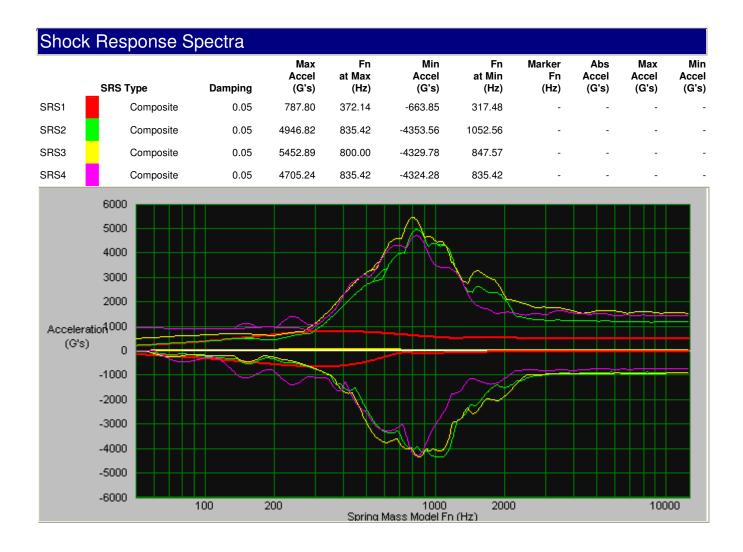
CELQ-001-PROC-451 Rev 11


			Juiu	,	0, 10		op 10		
Acce	eleration vs T	ime							
	Channel Descrip	tion:		G's	msec	In/S	Filter Hz	Max G's	Min G's
Ch1	Table			491.51	1.98	235.42	1262.63	491.51	-19.37
Ch2	144			1468.85	0.52	177.29	4464.29	1468.85	-828.78
Ch3	185			1357.40	0.64	203.27	3472.22	1357.40	-764.71
Ch4	159 (strain gauge	d)		2363.59	0.32	162.34	5952.38	2363.59	-1245.43
	12000								
	10000								
	8000								
	6000								

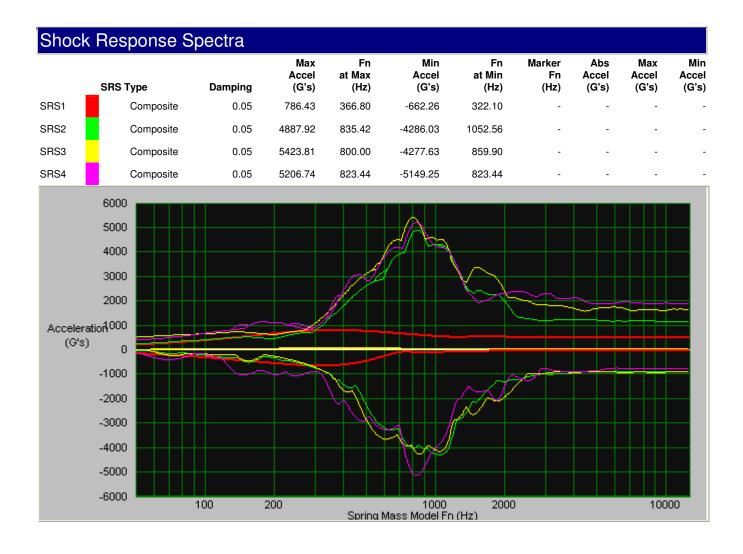


11.2 Set 2 - Card 26, 146, 187 (strain gauged)

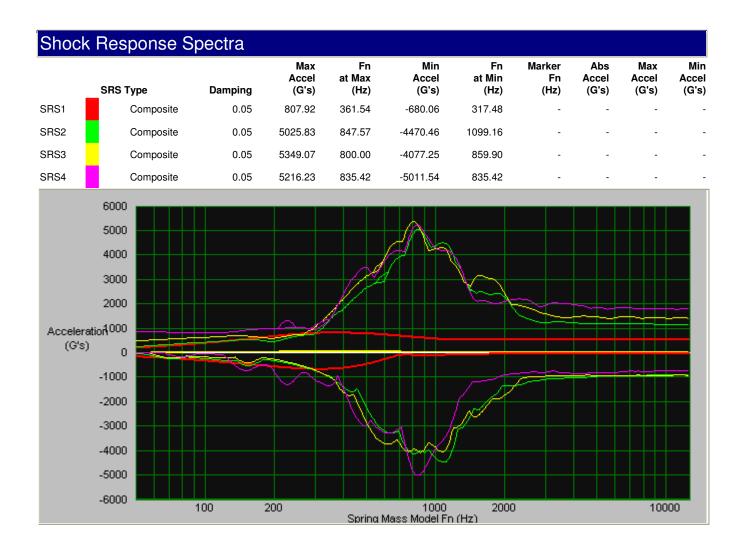




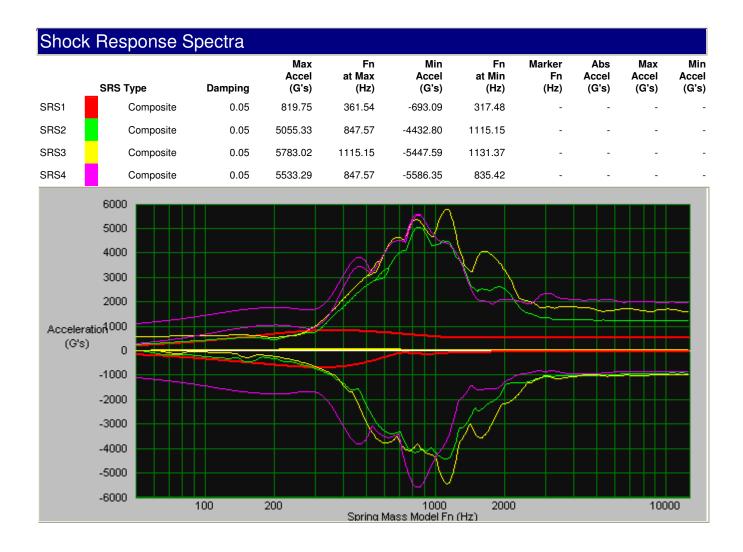
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	500.23	1.94	238.81	1288.66	500.23	-20.54					
Ch2	26	1167.42	0.76	217.36	3205.13	1167.42	-879.43					
Ch3	146	1529.40	0.66	218.70	2906.98	1529.40	-909.15					
Ch4	187 (strain gauged)	1418.55	0.80	282.38	2906.98	1418.55	-744.34					



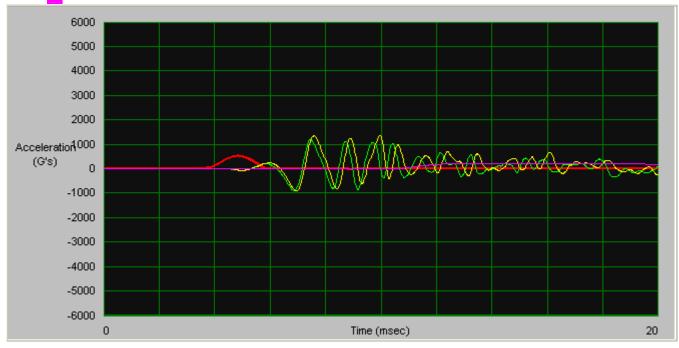
			Juiu	_0,	,	D . U	γ _P C		
Acce	eleratior	ı vs Time							
	Channel	Description:		G's	msec	In/S	Filter Hz	Max G's	Min G's
Ch1	Table			498.63	1.94	238.38	1275.51	498.63	-21.75
Ch2	26			1149.70	0.76	210.96	3289.47	1149.70	-882.19
Ch3	146			1574.90	0.64	222.09	3787.88	1574.90	-903.37
Ch4	187 (stra	in gauged)		1881.38	0.72	299.72	3289.47	1881.38	-759.86
	6000								
	5000								_
	4000								

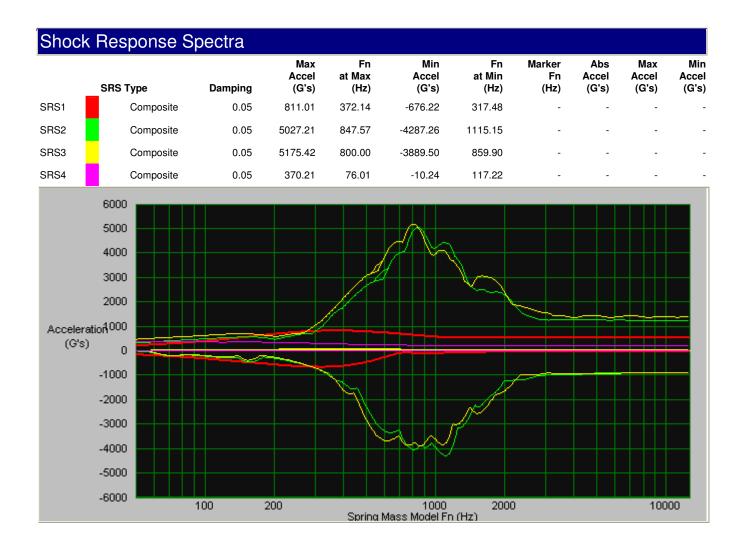


Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	512.90	1.94	243.99	1288.66	512.90	-20.18				
Ch2	26	1149.28	0.78	211.34	3289.47	1149.28	-899.44				
Ch3	146	1399.46	0.64	206.76	2976.19	1399.46	-919.25				
Ch4	187 (strain gauged)	1780.71	0.72	306.25	3205.13	1780.71	-744.77				

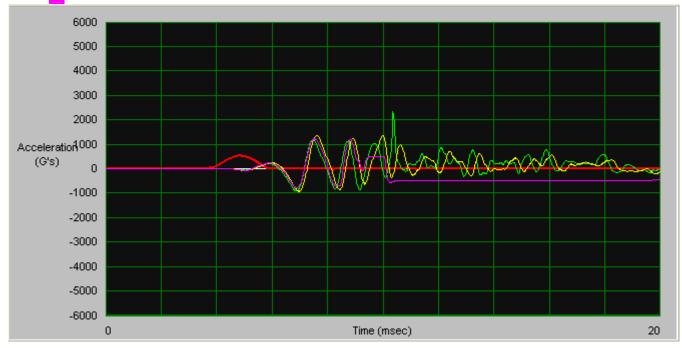


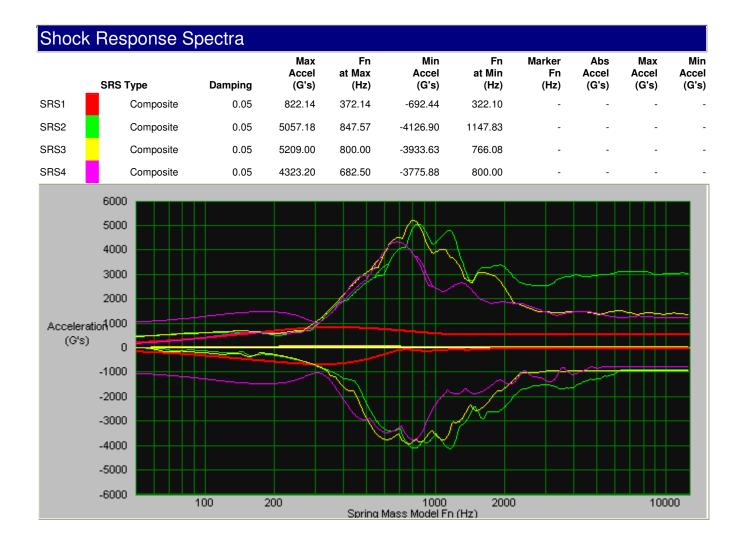
Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	519.30	1.94	248.11	1288.66	519.30	-24.69				
Ch2	26	1211.63	0.76	214.78	3289.47	1211.63	-912.05				
Ch3	146	1547.14	0.58	202.96	4310.34	1547.14	-979.70				
Ch4	187 (strain gauged)	1970.36	0.70	332.15	3289.47	1970.36	-836.61				



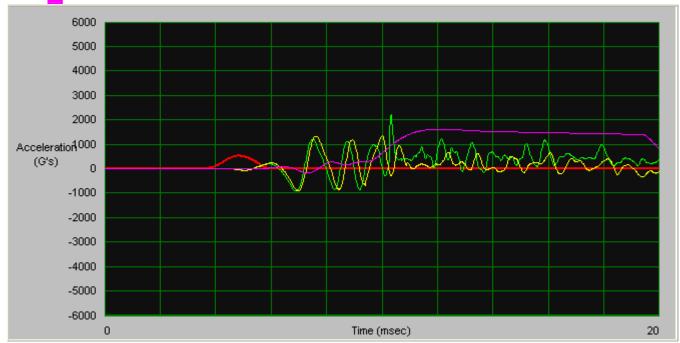

I nis report snail not de reproduced except in Tull Without the Written consent of the laboratory and product owner CELO-001-PROC-451 Rev. 11

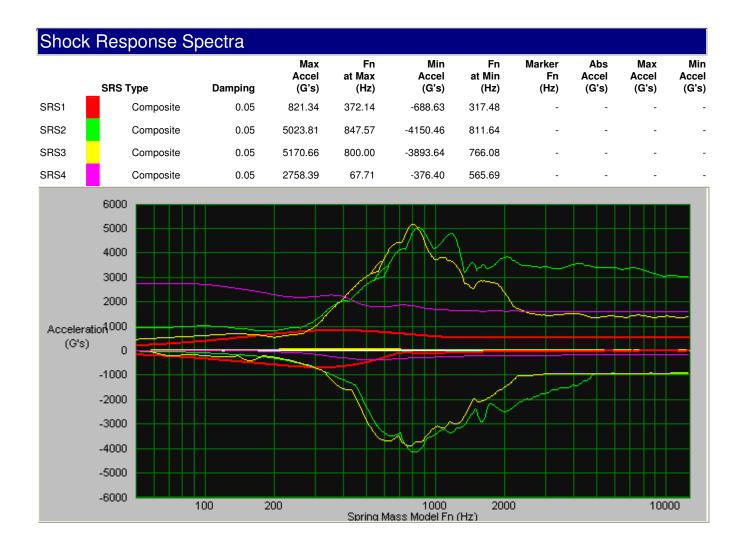
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	514.04	1.94	244.59	1288.66	514.04	-22.03					
Ch2	26	1192.90	0.76	214.94	3205.13	1192.90	-885.94					
Ch3	146	1347.35	0.70	209.28	2976.19	1347.35	-908.21					
Ch4	187 (strain gauged)	207.10	9.18	646.94	264.83	207.10	-0.41					



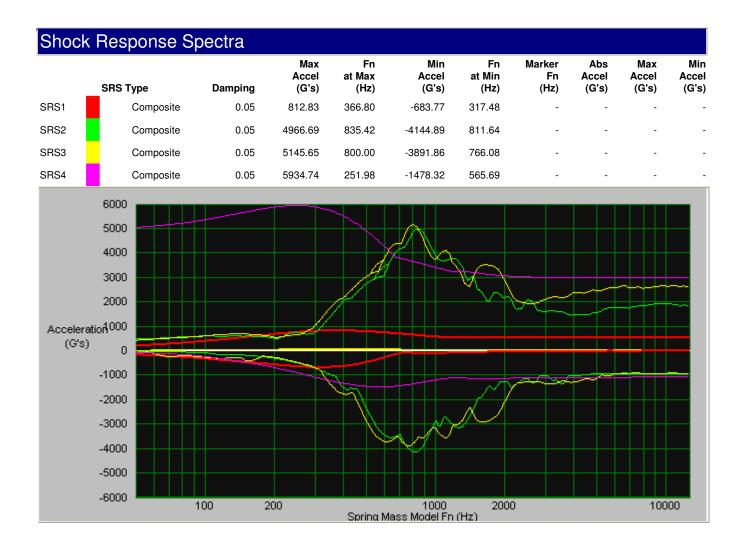


Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	519.81	1.92	247.12	1288.66	519.81	-24.49				
Ch2	26	2351.60	0.36	132.39	3289.47	2351.60	-904.43				
Ch3	146	1357.77	0.66	204.69	2976.19	1357.77	-927.75				
Ch4	187 (strain gauged)	1222.65	0.84	252.29	3048.78	1222.65	-775.67				



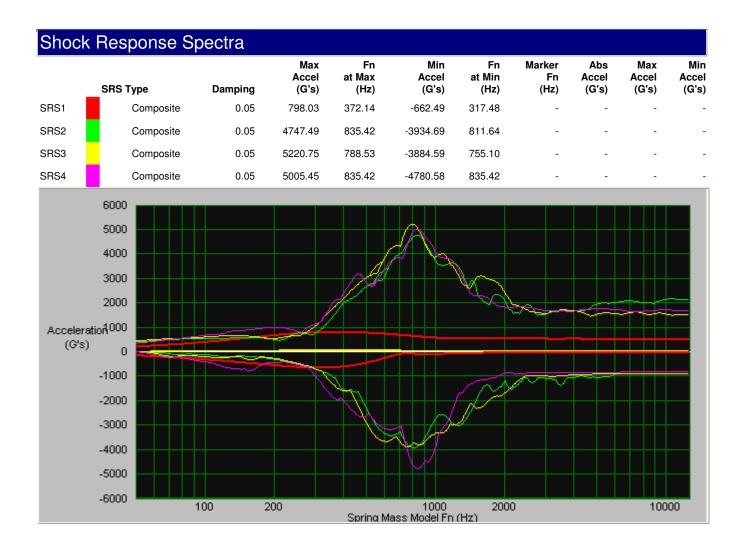


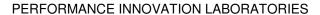
Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	518.59	1.92	245.61	1302.08	518.59	-19.75				
Ch2	26	2197.10	1.60	382.76	3289.47	2197.10	-917.87				
Ch3	146	1333.34	0.68	204.86	3048.78	1333.34	-909.43				
Ch4	187 (strain gauged)	1615.94	11.24	5759.66	247.52	1615.94	-179.27				



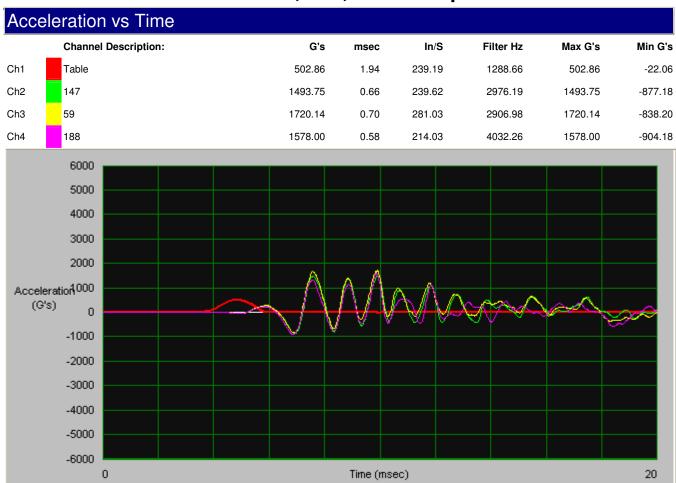
Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	515.95	1.94	244.36	1302.08	515.95	-18.86				
Ch2	26	1223.43	0.76	220.26	3289.47	1223.43	-918.68				
Ch3	146	2110.07	0.36	118.07	3048.78	2110.07	-919.07				
Ch4	187 (strain gauged)	2973.32	9.22	9021.96	281.53	2973.32	-1067.78				
	_										



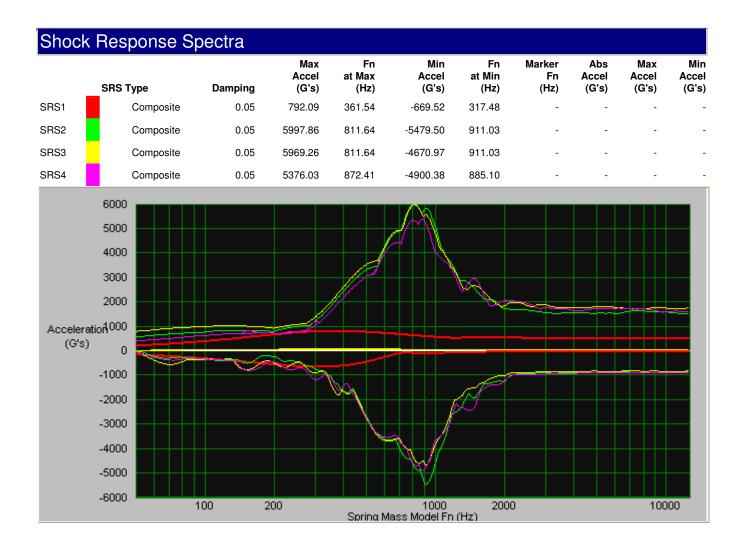




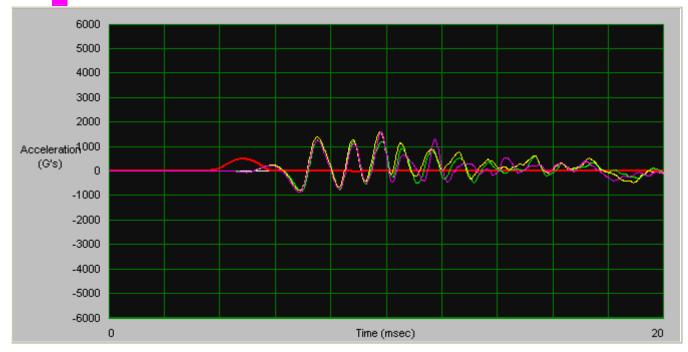
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	508.22	1.94	240.55	1302.08	508.22	-23.77					
Ch2	26	1628.33	0.20	47.18	3289.47	1628.33	-894.03					
Ch3	146	1468.38	0.60	204.86	3787.88	1468.38	-891.65					
Ch4	187 (strain gauged)	1651.46	0.72	290.26	3289.47	1651.46	-825.91					

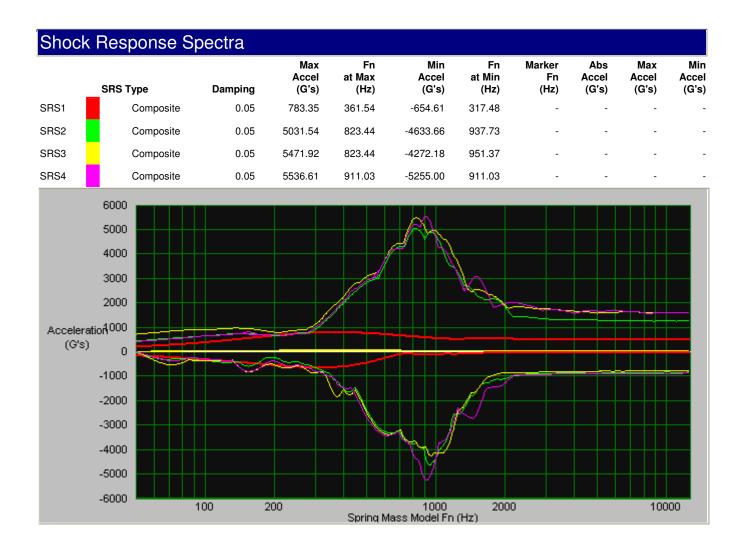


NASA Drop Testing

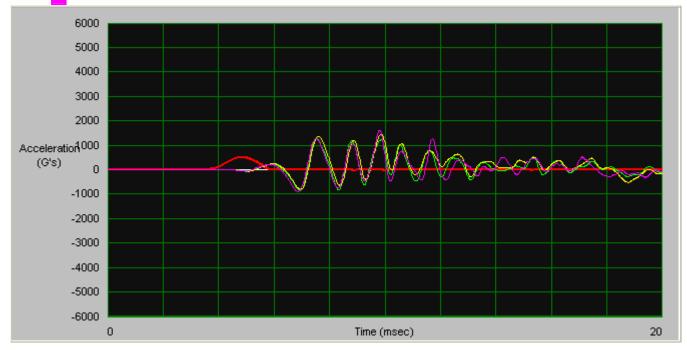


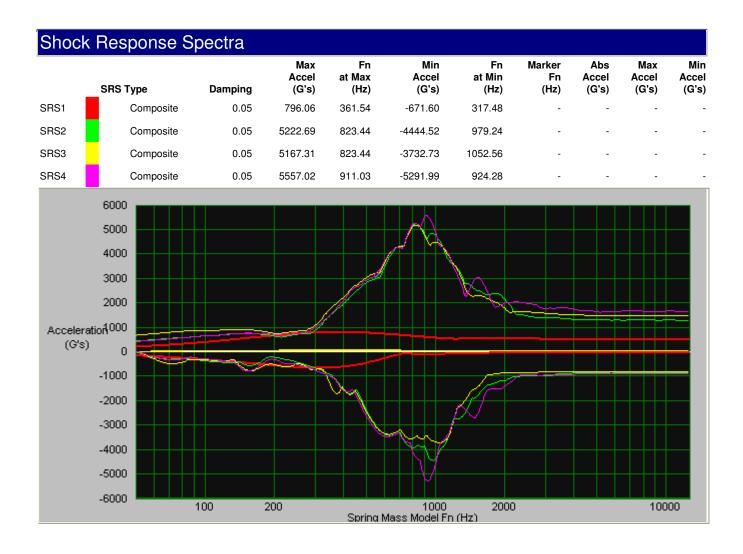
11.3 Set 3 - Card 59, 147, 188



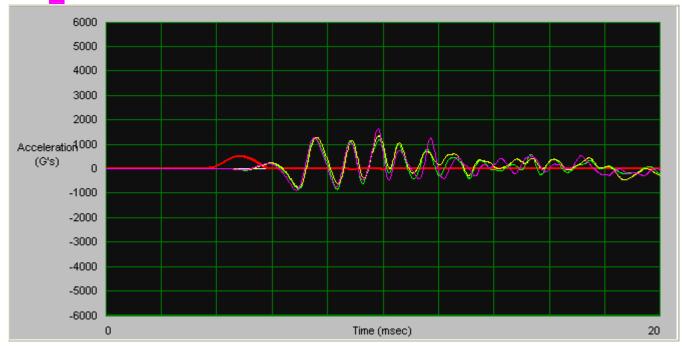


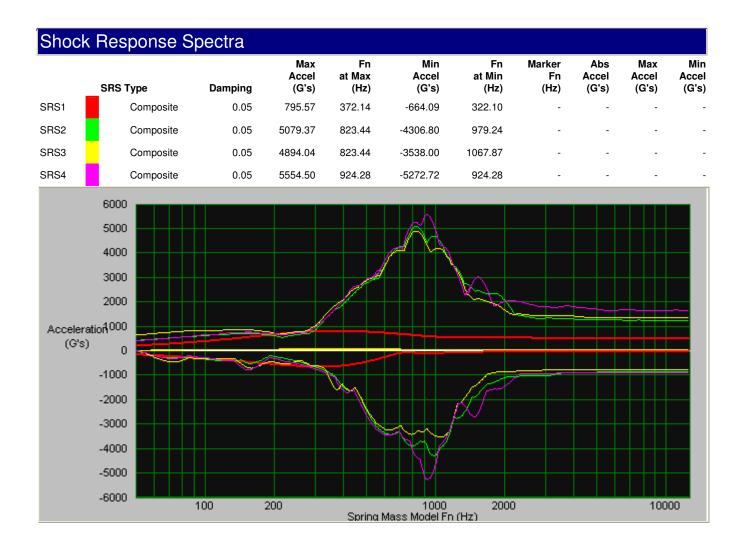
Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	499.93	1.94	237.57	1288.66	499.93	-26.62				
Ch2	147	1249.41	0.82	253.06	3048.78	1249.41	-829.79				
Ch3	59	1577.20	0.66	258.74	3378.38	1577.20	-789.46				
Ch4	188	1581.91	0.56	215.63	4032.26	1581.91	-876.17				



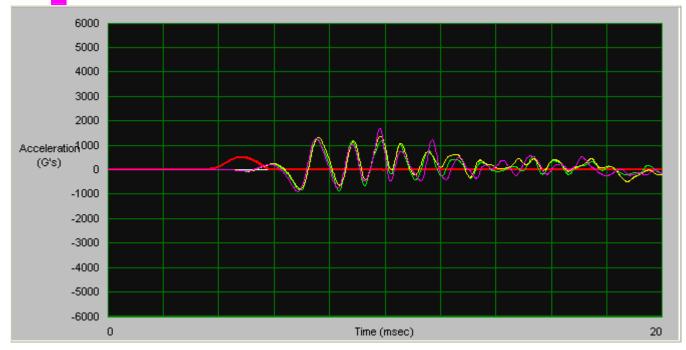


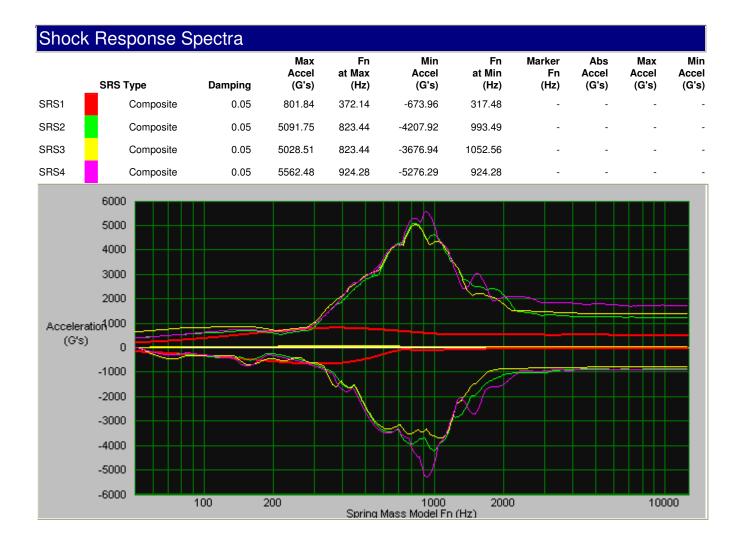
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	506.96	1.94	240.21	1302.08	506.96	-21.36					
Ch2	147	1278.14	0.80	247.39	3125.00	1278.14	-842.16					
Ch3	59	1454.33	0.68	239.98	1736.11	1454.33	-801.55					
Ch4	188	1612.16	0.58	218.55	4032.26	1612.16	-893.84					



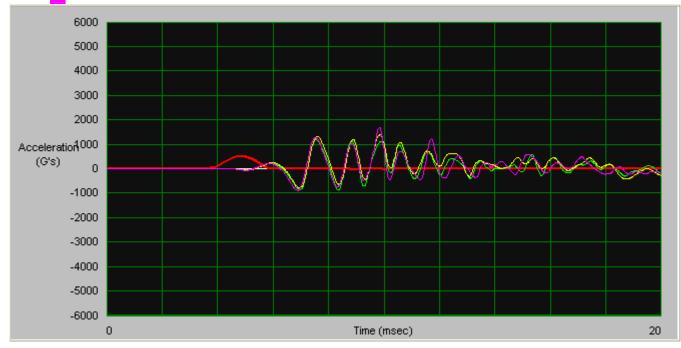


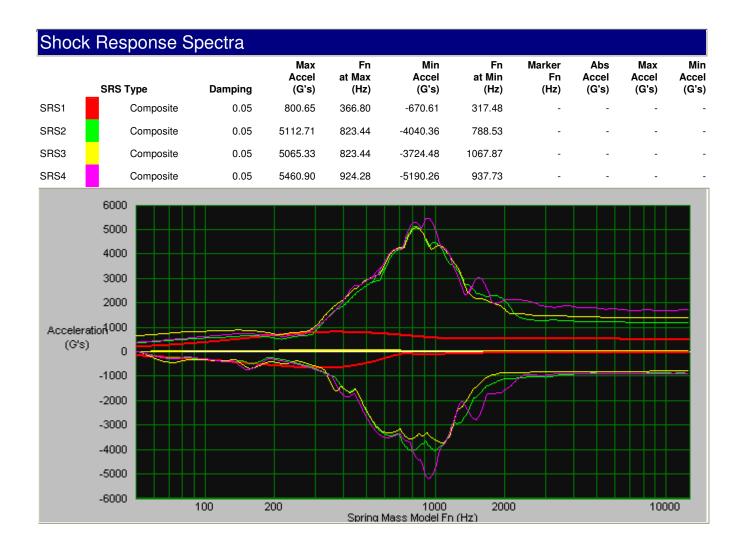
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	506.30	1.92	239.41	1288.66	506.30	-24.82					
Ch2	147	1236.14	0.80	240.70	3048.78	1236.14	-847.82					
Ch3	59	1335.93	0.70	227.13	1736.11	1335.93	-767.28					
Ch4	188	1627.33	0.60	221.30	4032.26	1627.33	-886.27					





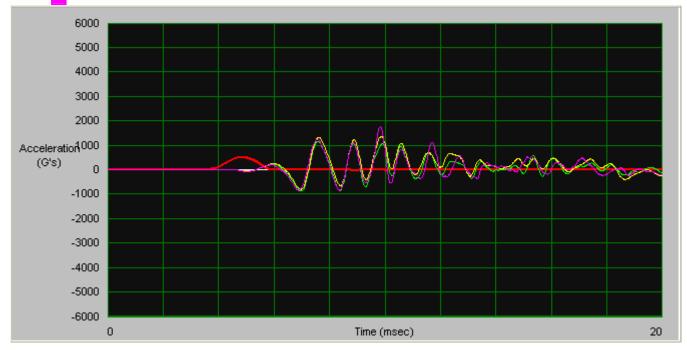
Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	509.12	1.94	240.72	1302.08	509.12	-20.66	
Ch2	147	1230.17	0.80	239.01	3125.00	1230.17	-856.00	
Ch3	59	1371.41	0.70	228.49	1760.56	1371.41	-785.83	
Ch4	188	1680.87	0.58	222.02	4166.67	1680.87	-893.45	

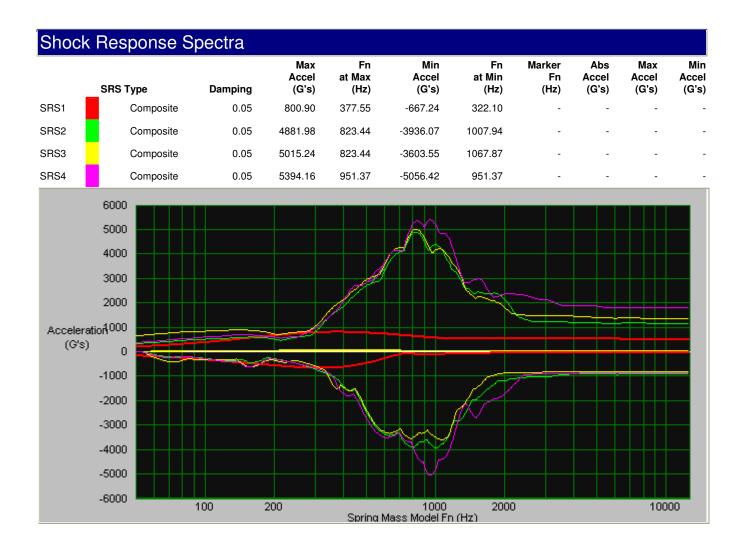



CELQ-001-PROC-451 Rev 11

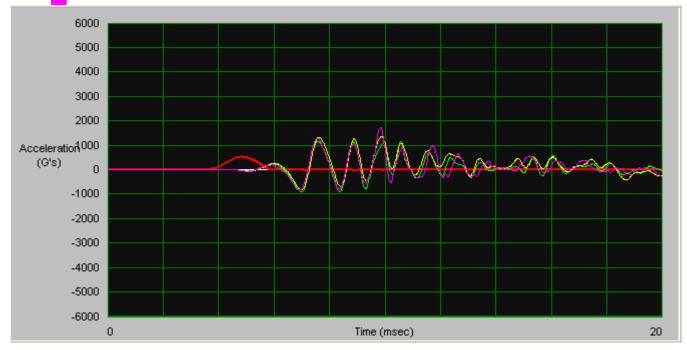
Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	509.56	1.92	239.60	1302.08	509.56	-26.19	
Ch2	147	1186.11	0.78	228.55	3125.00	1186.11	-864.35	
Ch3	59	1384.80	0.68	230.48	1760.56	1384.80	-791.23	
Ch4	188	1678.10	0.56	223.55	4032.26	1678.10	-888.28	

Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	512.46	1.94	241.86	1302.08	512.46	-20.90	
Ch2	147	1191.31	0.78	226.28	3125.00	1191.31	-901.78	
Ch3	59	1376.62	0.68	227.63	1785.71	1376.62	-811.46	
Ch4	188	1768.84	0.52	224.91	4166.67	1768.84	-861.46	

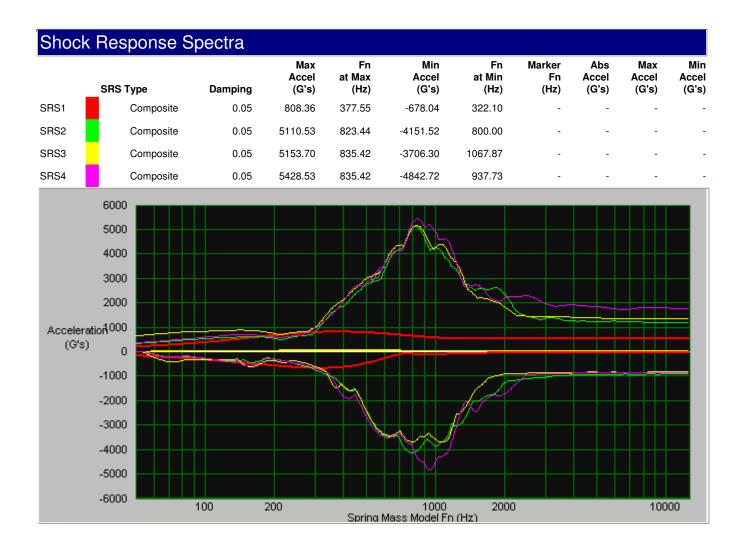




Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	509.76	1.92	239.56	1302.08	509.76	-28.10	
Ch2	147	1154.76	0.80	221.94	3205.13	1154.76	-876.85	
Ch3	59	1359.88	0.70	228.01	1760.56	1359.88	-801.73	
Ch4	188	1764.44	0.54	221.63	4310.34	1764.44	-842.00	

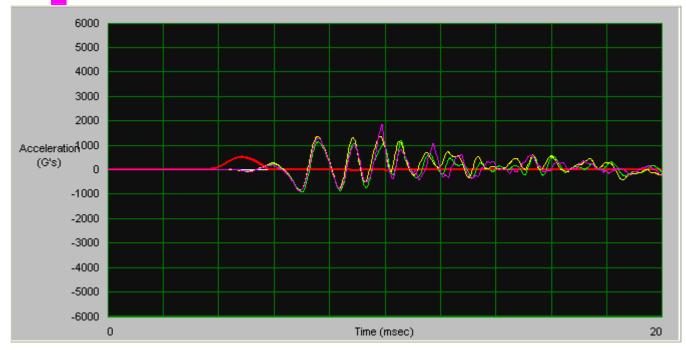


CELQ-001-PROC-451 Rev 11

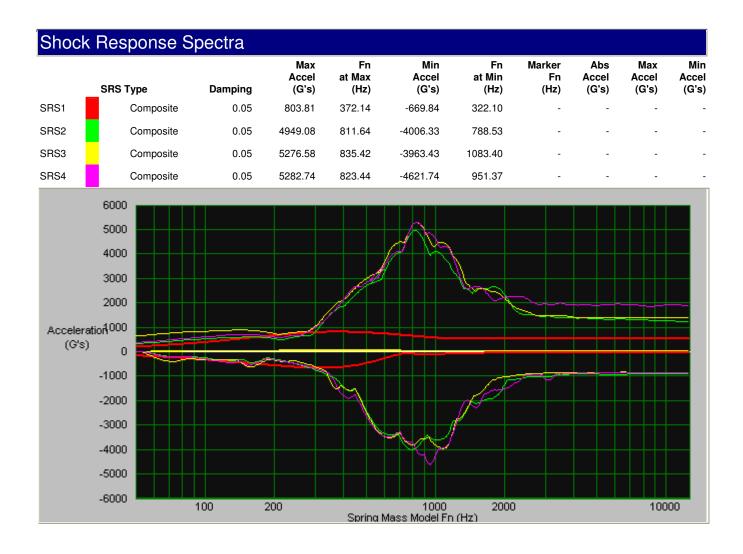


Card 59, 147, 188 - Drop 9

Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	513.46	1.92	241.66	1302.08	513.46	-21.77					
Ch2	147	1160.85	0.78	221.31	3205.13	1160.85	-902.63					
Ch3	59	1351.78	0.68	228.99	1760.56	1351.78	-827.79					
Ch4	188	1727.41	0.54	221.01	4310.34	1727.41	-846.25					

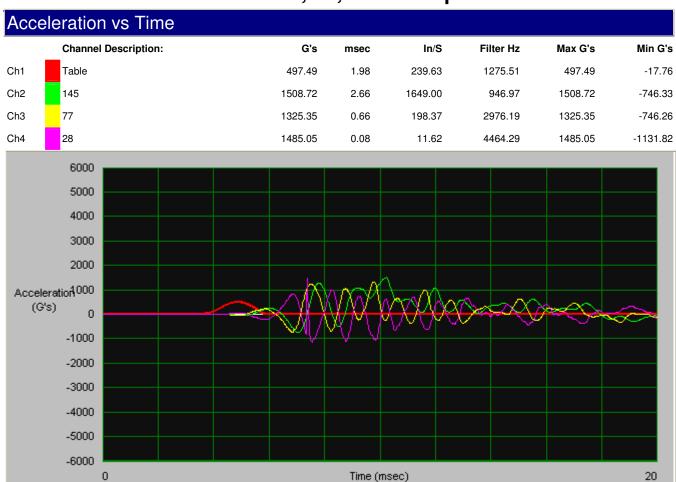


This report shall not be reproduced except in full without the written consent of the laboratory and product owner

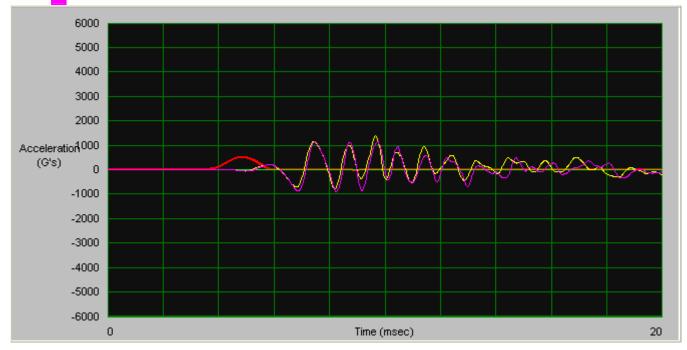


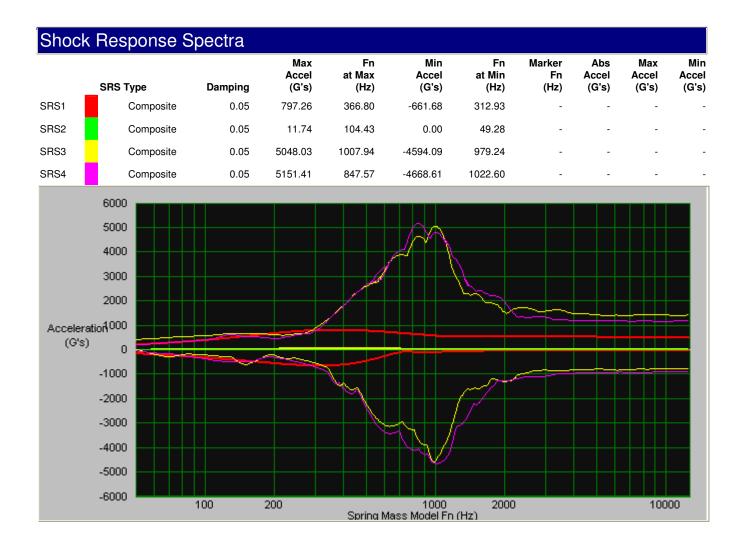
Card 59, 147, 188 - Drop 10

Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	512.93	1.92	240.10	1315.79	512.93	-25.94					
Ch2	147	1194.49	0.48	117.05	3205.13	1194.49	-899.14					
Ch3	59	1370.12	0.68	227.44	2976.19	1370.12	-837.97					
Ch4	188	1837.87	0.54	212.90	4166.67	1837.87	-865.24					

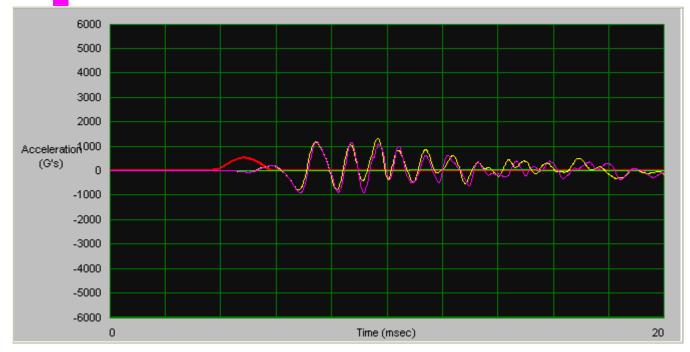


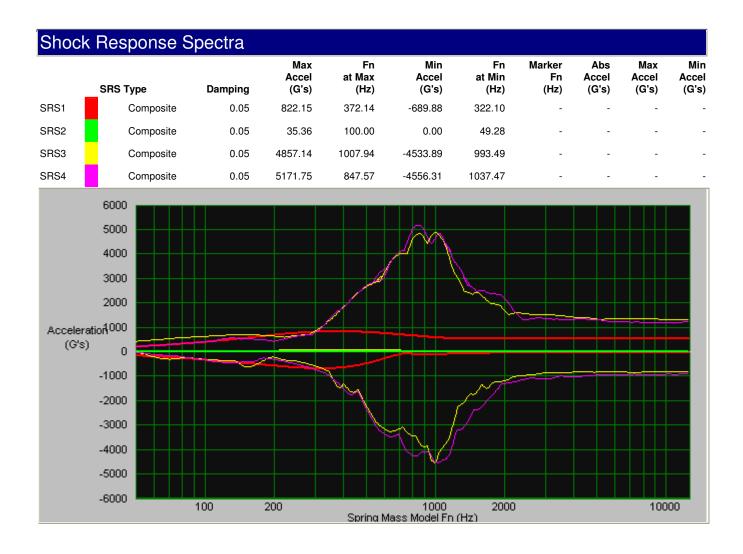
11.4 Set 4 - Card 28, 77, 145



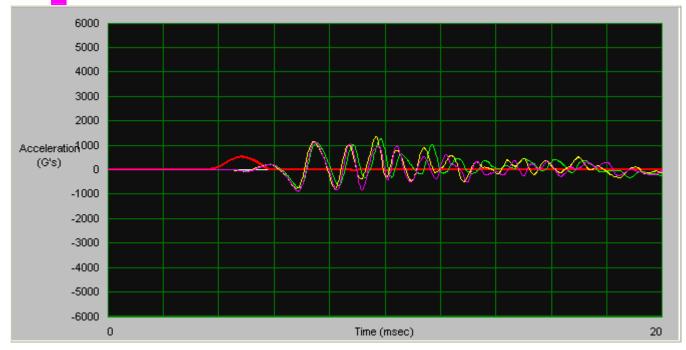


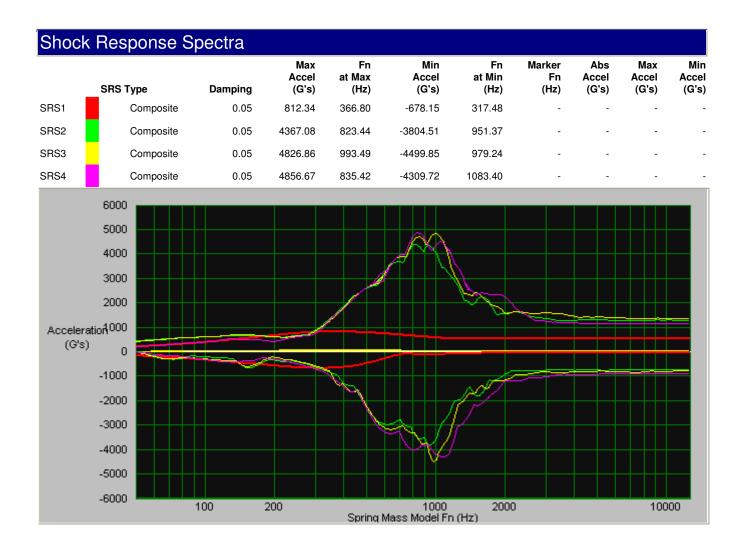
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	509.90	1.96	242.22	1275.51	509.90	-25.05					
Ch2	145	6.96	20.00	45.45	125.00	6.96	4.88					
Ch3	77	1383.42	0.60	191.81	3906.25	1383.42	-774.90					
Ch4	28	1155.00	0.58	165.11	3205.13	1155.00	-896.85					



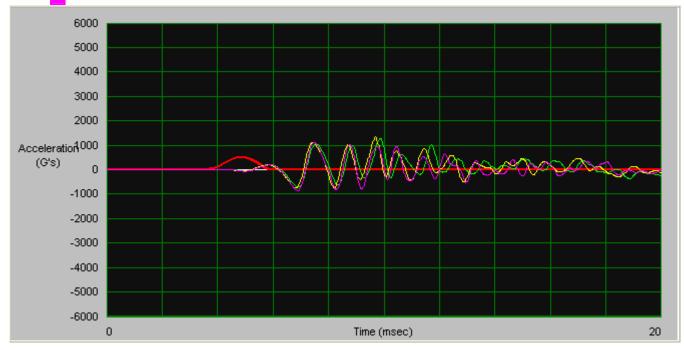

CELQ-001-PROC-451 Rev 11

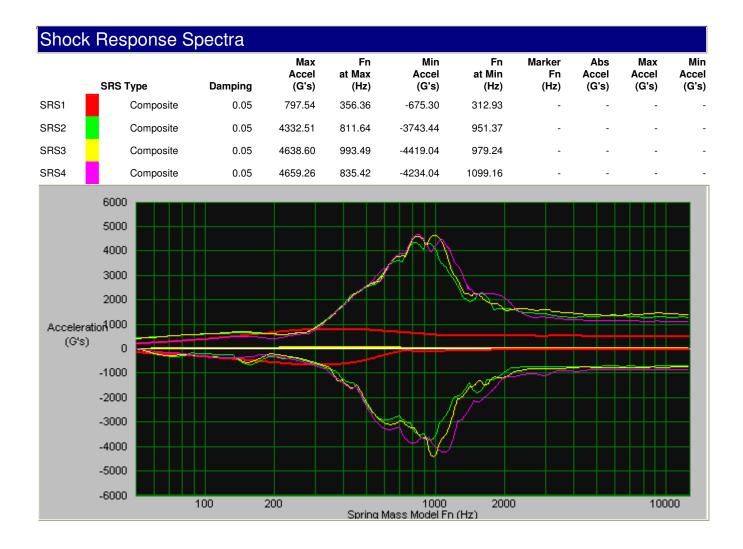
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	521.45	1.92	246.04	1302.08	521.45	-20.36					
Ch2	145	21.78	20.00	111.12	125.00	21.78	4.88					
Ch3	77	1313.69	0.60	195.43	3906.25	1313.69	-795.28					
Ch4	28	1193.19	0.76	217.18	3289.47	1193.19	-911.89					



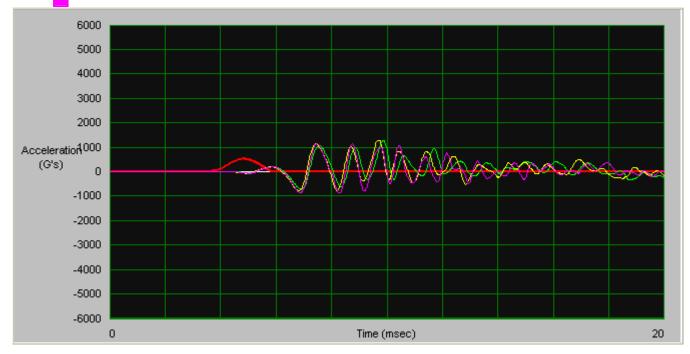

This report shall hot be reproduced except in full without the written consent of the laboratory and product owner

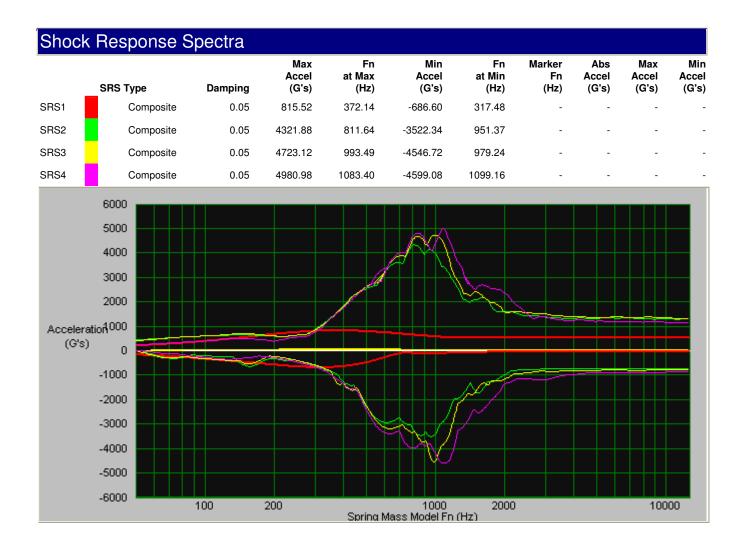
Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	517.10	1.92	243.85	1302.08	517.10	-23.98				
Ch2	145	1262.02	0.62	191.47	3676.47	1262.02	-723.96				
Ch3	77	1356.02	0.62	192.35	3906.25	1356.02	-775.07				
Ch4	28	1127.22	0.76	211.06	3205.13	1127.22	-880.93				



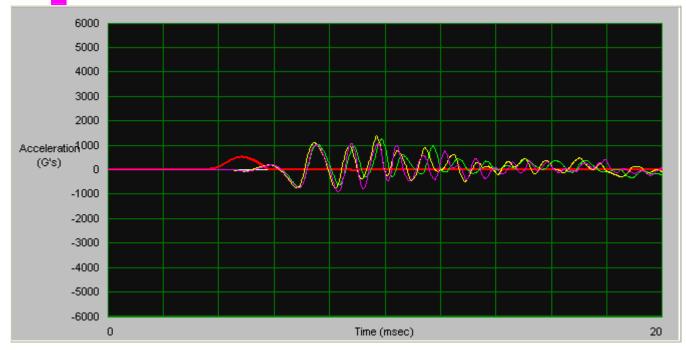


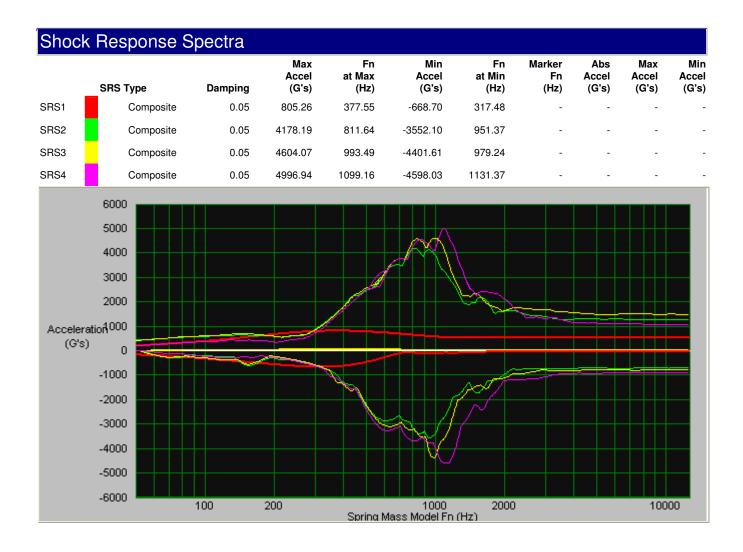
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	508.30	1.94	243.22	1275.51	508.30	-20.20					
Ch2	145	1279.29	0.60	188.69	3906.25	1279.29	-707.87					
Ch3	77	1353.99	0.62	190.55	3787.88	1353.99	-748.56					
Ch4	28	1117.26	0.78	208.67	3205.13	1117.26	-850.60					



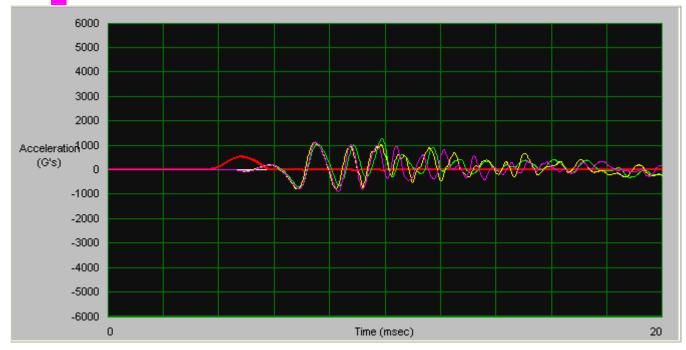

This report shall not be reproduced except in full without the written consent of the laboratory and product owner

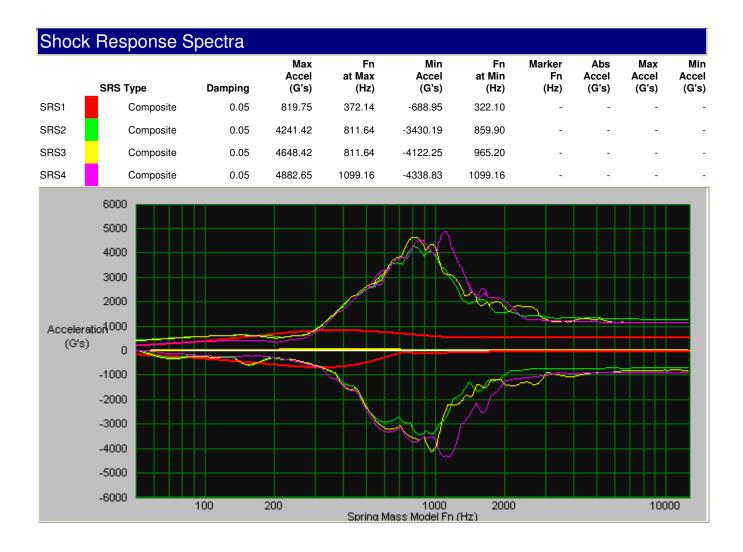
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	519.43	1.94	245.18	1302.08	519.43	-20.84					
Ch2	145	1279.24	0.62	188.39	3906.25	1279.24	-716.92					
Ch3	77	1283.70	0.62	190.27	3787.88	1283.70	-777.27					
Ch4	28	1160.03	0.78	212.80	3205.13	1160.03	-877.73					



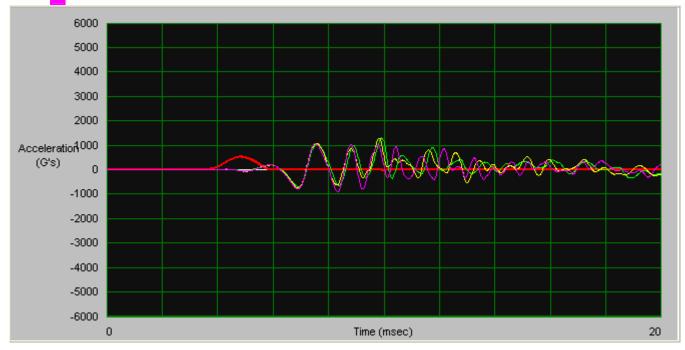

This report shall not be reproduced except in full without the written consent of the laboratory and product owner

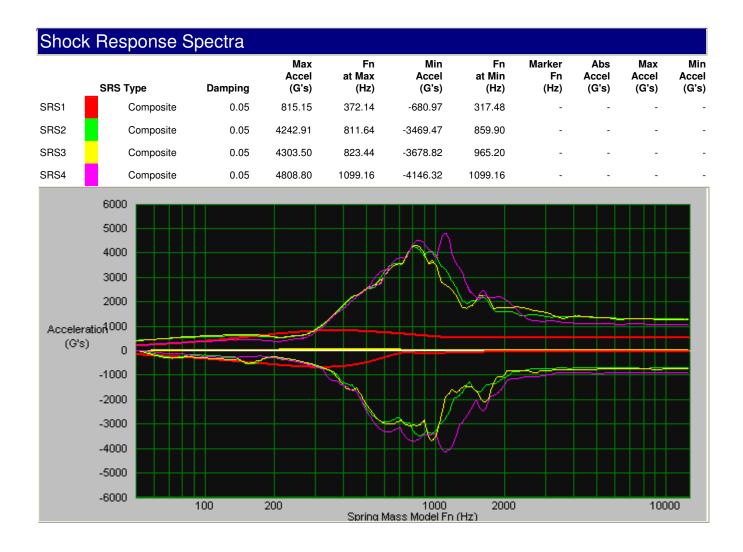
Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	513.96	1.94	242.13	1302.08	513.96	-27.48				
Ch2	145	1250.27	0.62	186.35	3787.88	1250.27	-703.97				
Ch3	77	1396.65	0.60	187.14	3906.25	1396.65	-758.33				
Ch4	28	1069.71	0.46	123.96	3125.00	1069.71	-892.74				



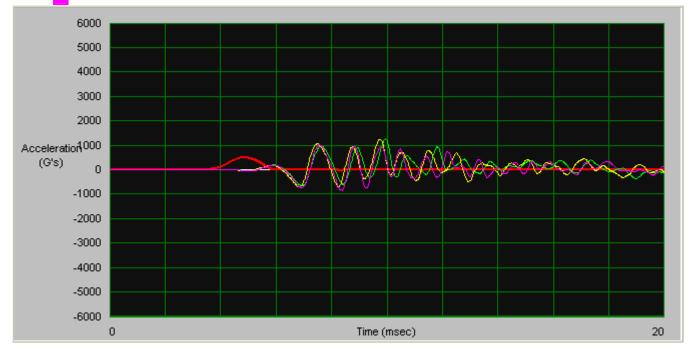

This report shall not be reproduced except in full without the written consent of the laboratory and product owner

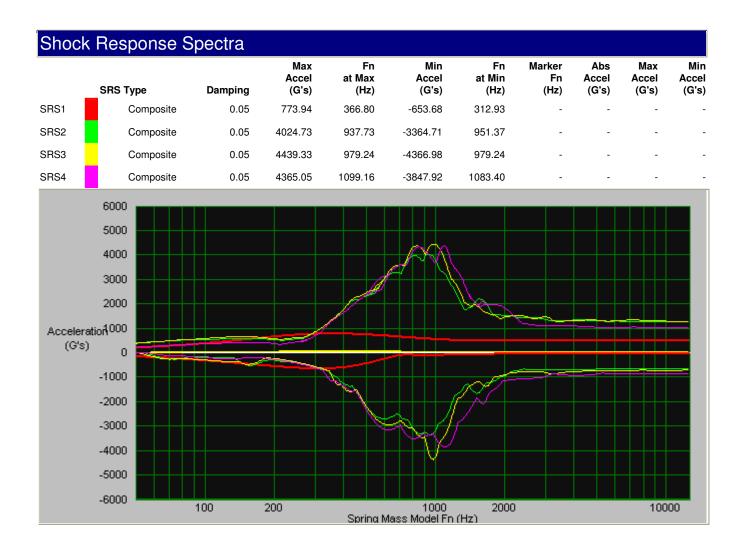
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	521.57	1.90	244.60	1302.08	521.57	-26.37					
Ch2	145	1268.27	0.60	186.27	3787.88	1268.27	-710.27					
Ch3	77	1124.41	0.80	231.07	3048.78	1124.41	-794.42					
Ch4	28	1126.56	0.78	206.53	3289.47	1126.56	-887.90					



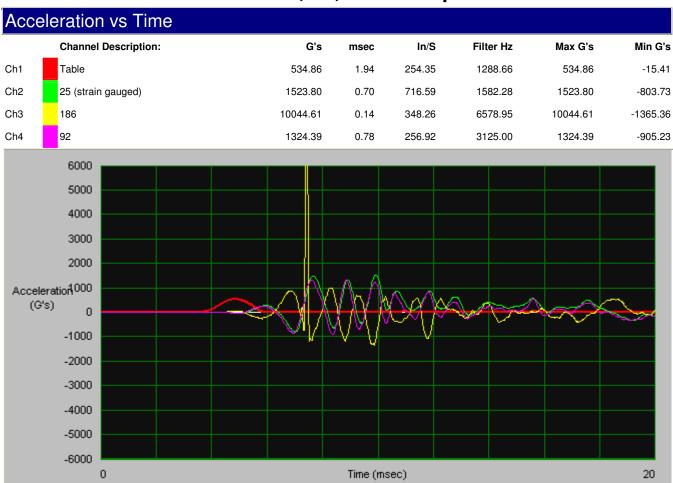

This report shall not be reproduced except in full without the written consent of the laboratory and product owner CELO-001-PROC-451 Rev. 11

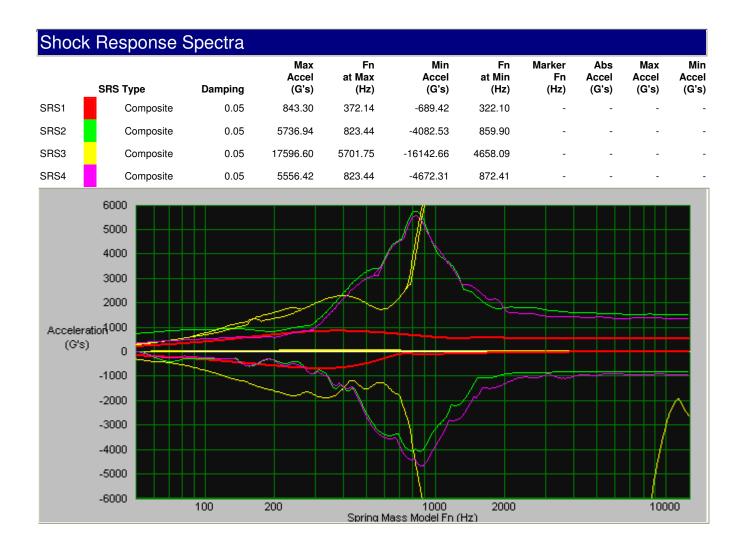
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	518.82	1.92	243.89	1302.08	518.82	-23.39					
Ch2	145	1290.90	0.60	185.93	3906.25	1290.90	-703.50					
Ch3	77	1271.44	0.58	274.05	1666.67	1271.44	-750.66					
Ch4	28	1071.74	0.78	204.88	3205.13	1071.74	-896.36					




This report shall not be reproduced except in full without the written consent of the laboratory and product owner

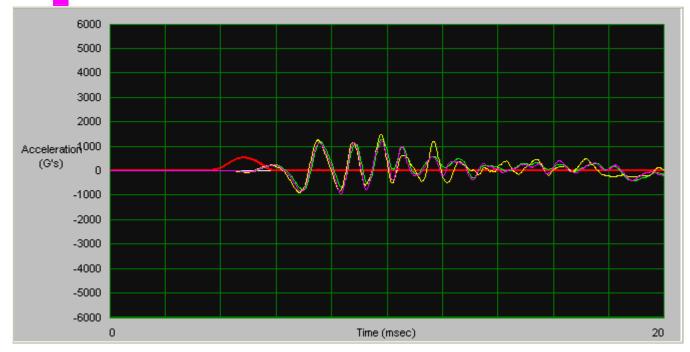
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	494.01	2.00	240.00	1250.00	494.01	-22.87					
Ch2	145	1257.73	0.60	180.43	3906.25	1257.73	-652.05					
Ch3	77	1234.34	0.62	186.26	3787.88	1234.34	-708.30					
Ch4	28	1012.99	0.78	193.34	3289.47	1012.99	-844.99					



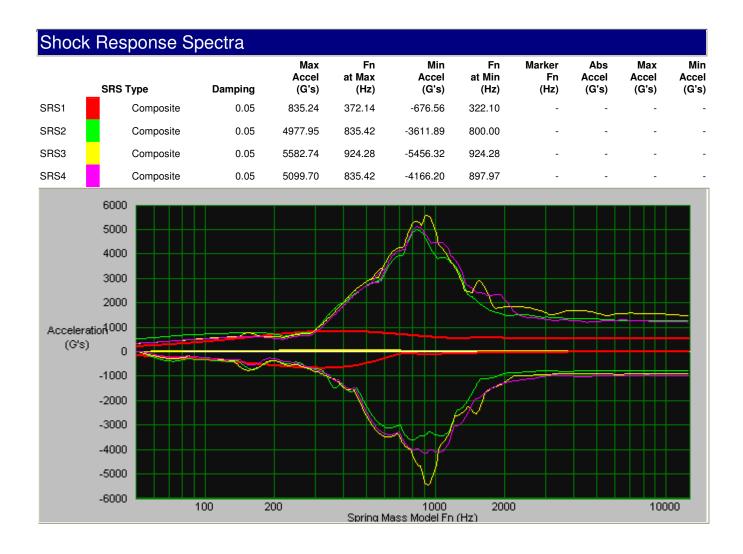


11.5 Set 5 - Card 25 (strain gauged), 92, 186

Card 25, 92, 186 - Drop 1

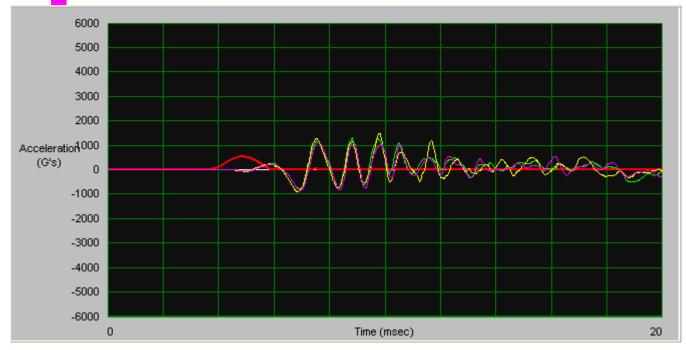


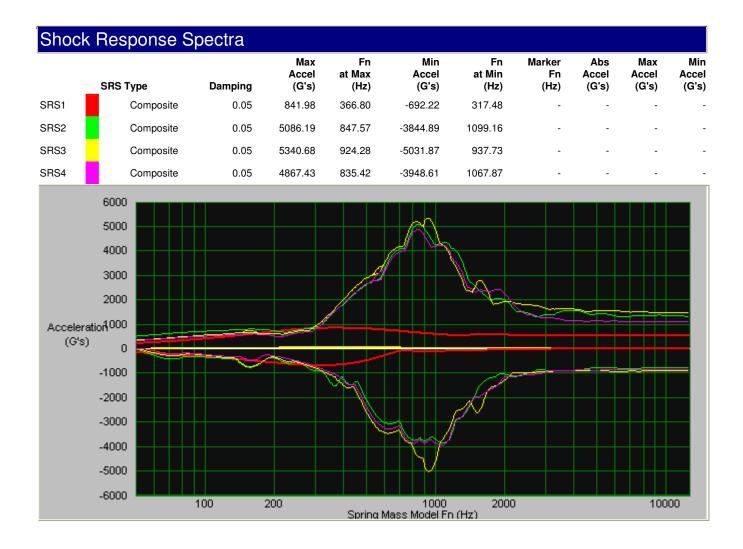
CELQ-001-PROC-451 Rev 11



Card 25, 92, 186 - Drop 2

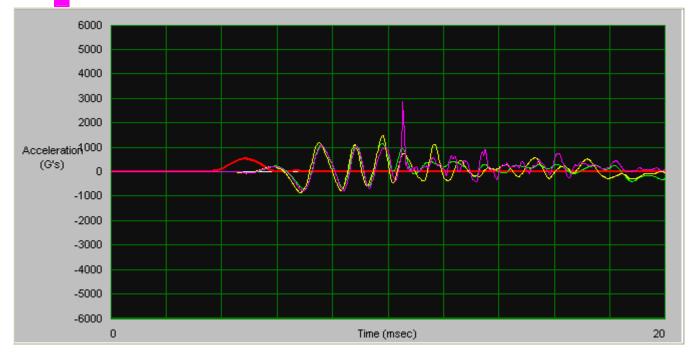
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	532.48	1.94	251.61	1288.66	532.48	-15.04					
Ch2	25 (strain gauged)	1267.96	0.66	347.76	1785.71	1267.96	-777.39					
Ch3	186	1483.07	0.56	197.41	4166.67	1483.07	-886.16					
Ch4	92	1179.55	0.62	180.59	3125.00	1179.55	-941.70					



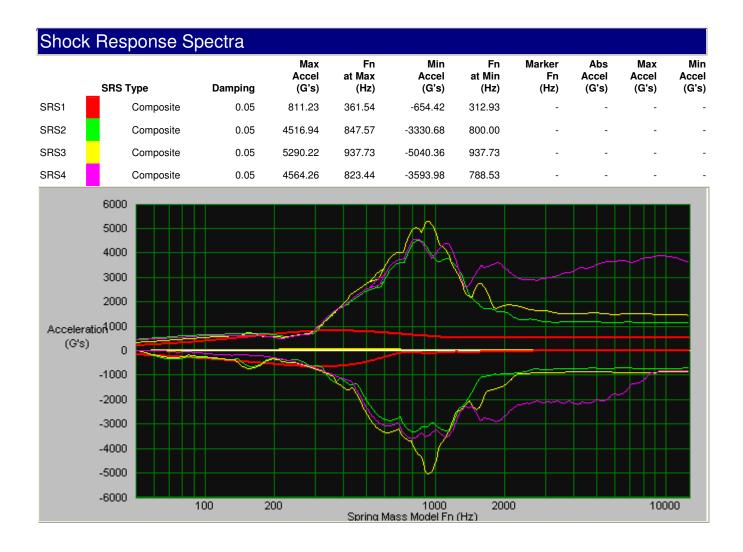


Card 25, 92, 186 - Drop 3

Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	535.38	1.92	253.77	1288.66	535.38	-12.50	
Ch2	25 (strain gauged)	1300.95	0.54	171.40	3472.22	1300.95	-765.33	
Ch3	186	1478.79	0.56	195.85	4166.67	1478.79	-897.26	
Ch4	92	1101.63	0.80	214.89	3205.13	1101.63	-847.83	

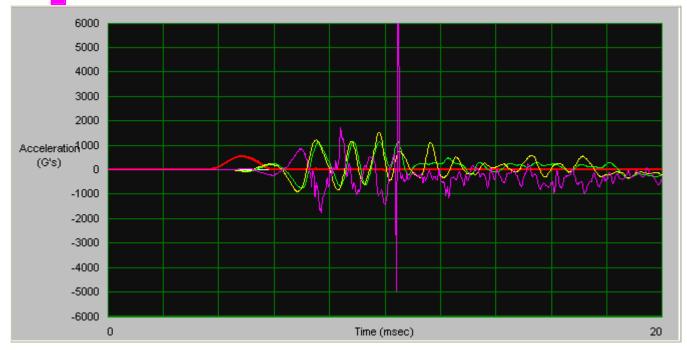


This report shall not be reproduced except in full without the written consent of the laboratory and product owner

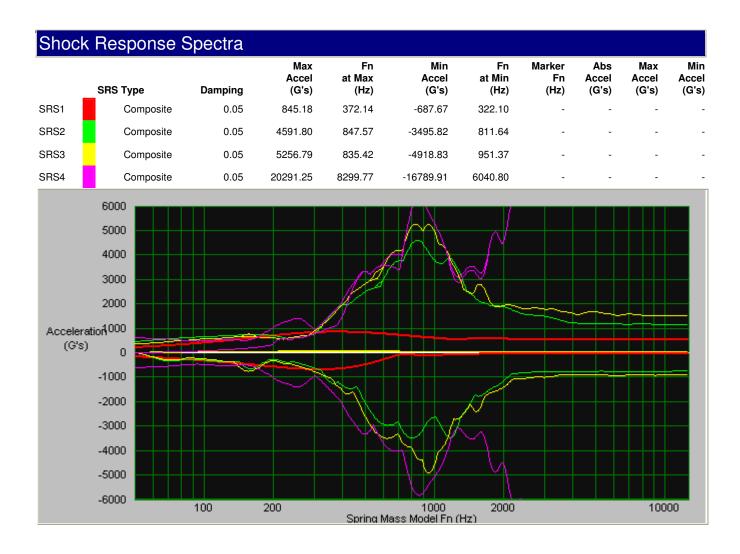


Card 25, 92, 186 - Drop 4

Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	520.67	1.98	248.18	1262.63	520.67	-13.59	
Ch2	25 (strain gauged)	1147.39	0.66	312.65	1838.24	1147.39	-711.94	
Ch3	186	1460.01	0.56	192.73	4166.67	1460.01	-854.58	
Ch4	92	2873.49	0.24	123.31	3787.88	2873.49	-789.47	

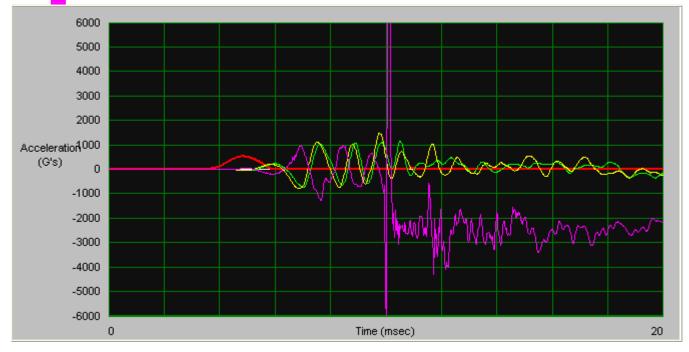


CELQ-001-PROC-451 Rev 11

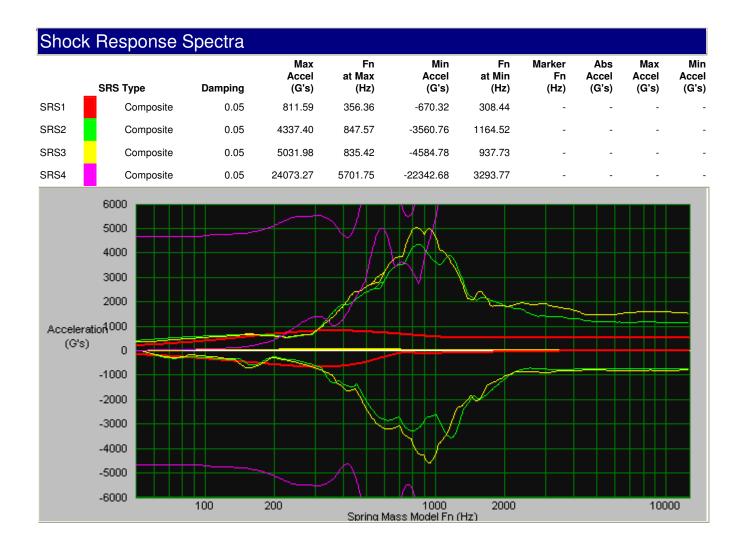


Card 25, 92, 186 - Drop 5

Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	536.56	1.92	252.77	1302.08	536.56	-21.66	
Ch2	25 (strain gauged)	1134.84	0.52	311.35	2016.13	1134.84	-753.21	
Ch3	186	1511.62	0.56	198.95	4166.67	1511.62	-892.93	
Ch4	92	9804.06	0.12	205.58	6250.00	9804.06	-4960.26	

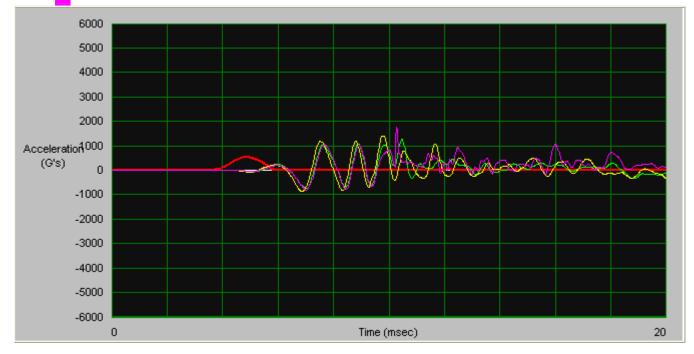


CELQ-001-PROC-451 Rev 11

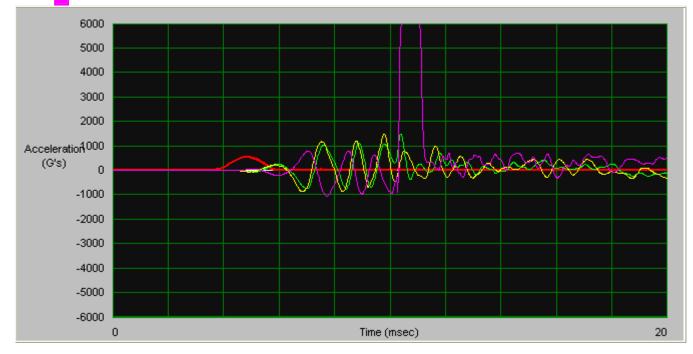


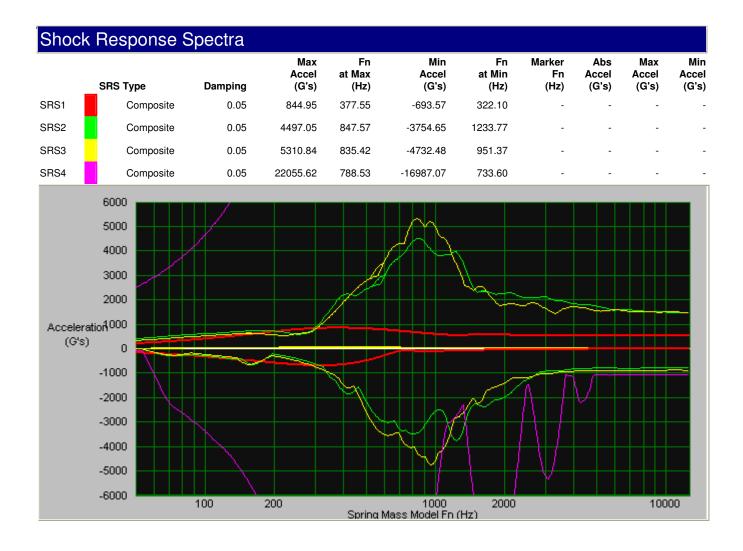
Card 25, 92, 186 - Drop 6

Acceleration vs Time								
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's	
Ch1	Table	518.09	1.98	250.44	1262.63	518.09	-13.67	
Ch2	25 (strain gauged)	1142.12	0.48	294.77	2016.13	1142.12	-726.89	
Ch3	186	1474.12	0.58	199.54	4032.26	1474.12	-793.00	
Ch4	92	10022.96	0.18	472.22	7352.94	10022.96	-7847.77	

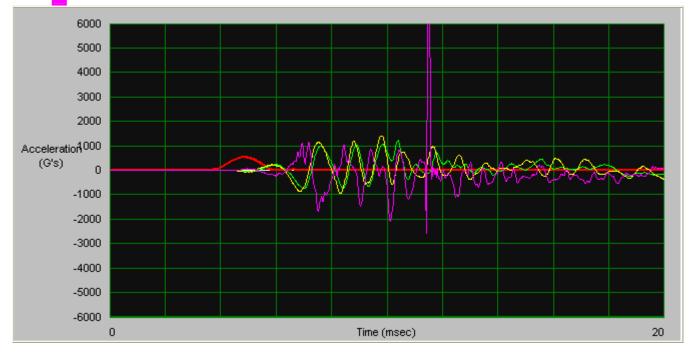


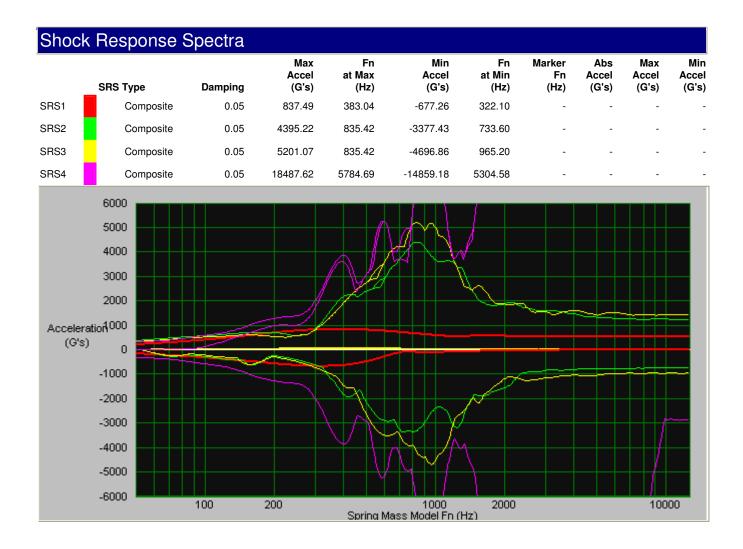
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	532.66	1.92	252.19	1288.66	532.66	-15.75					
Ch2	25 (strain gauged)	1257.85	1.14	306.55	2155.17	1257.85	-745.61					
Ch3	186	1395.91	0.54	191.36	4310.34	1395.91	-857.82					
Ch4	92	1745.49	0.76	406.49	3205.13	1745.49	-804.01					



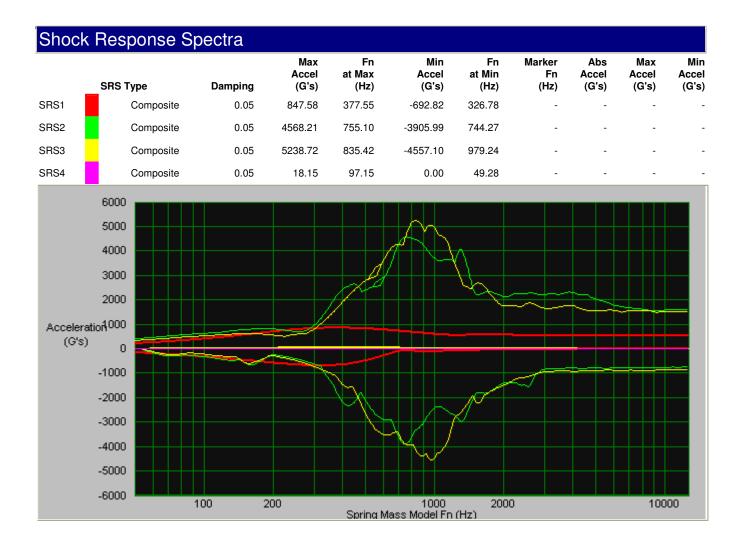


Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	537.65	1.92	253.38	1302.08	537.65	-17.50					
Ch2	25 (strain gauged)	1472.45	1.08	316.75	2272.73	1472.45	-772.60					
Ch3	186	1473.38	0.54	189.28	4166.67	1473.38	-873.78					
Ch4	92	10163.38	0.94	2925.07	2358.49	10163.38	-1061.21					

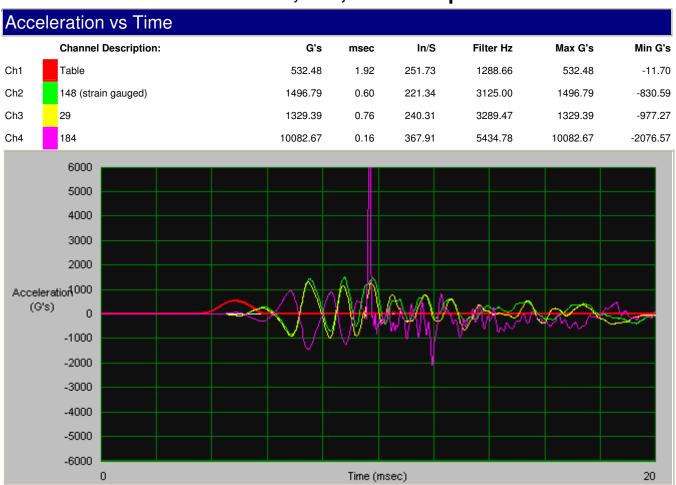


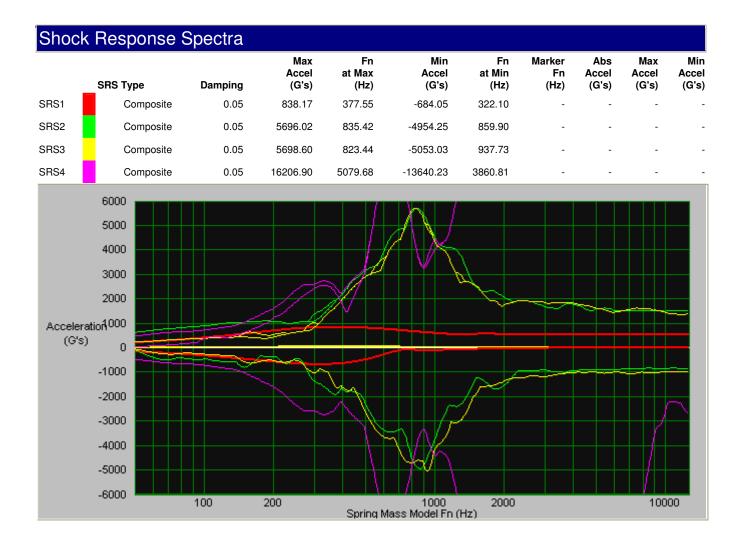


Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	533.19	1.92	250.51	1302.08	533.19	-14.86					
Ch2	25 (strain gauged)	1220.43	1.08	301.34	2272.73	1220.43	-745.92					
Ch3	186	1408.50	0.56	192.02	4464.29	1408.50	-940.35					
Ch4	92	10103.53	0.14	333.85	5208.33	10103.53	-2600.40					

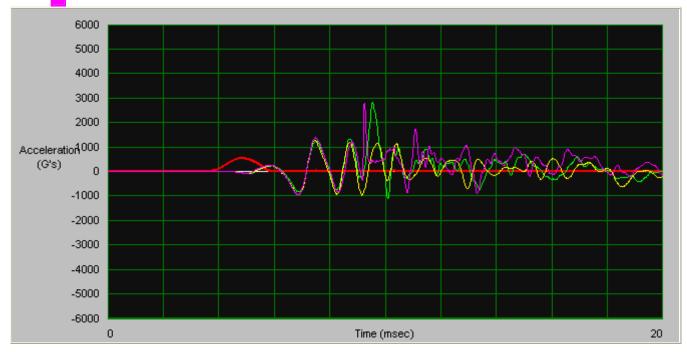


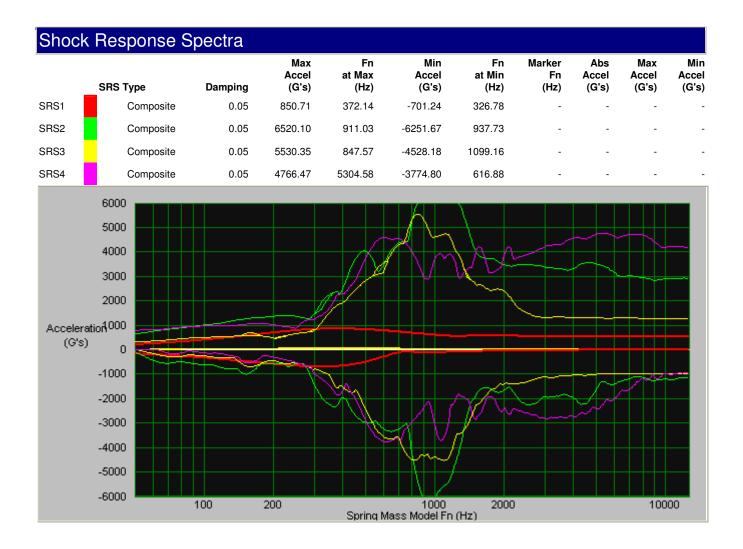
Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	539.30	1.92	253.05	1302.08	539.30	-15.93				
Ch2	25 (strain gauged)	1565.53	0.96	321.93	2403.85	1565.53	-755.08				
Ch3	186	1498.68	0.56	191.73	4310.34	1498.68	-860.45				
Ch4	92	9.77	20.00	67.49	125.00	9.77	7.32				



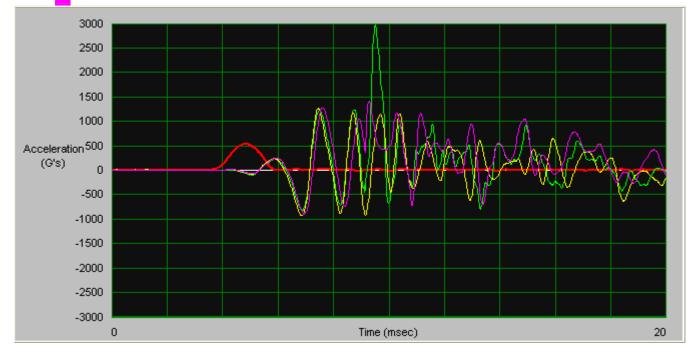


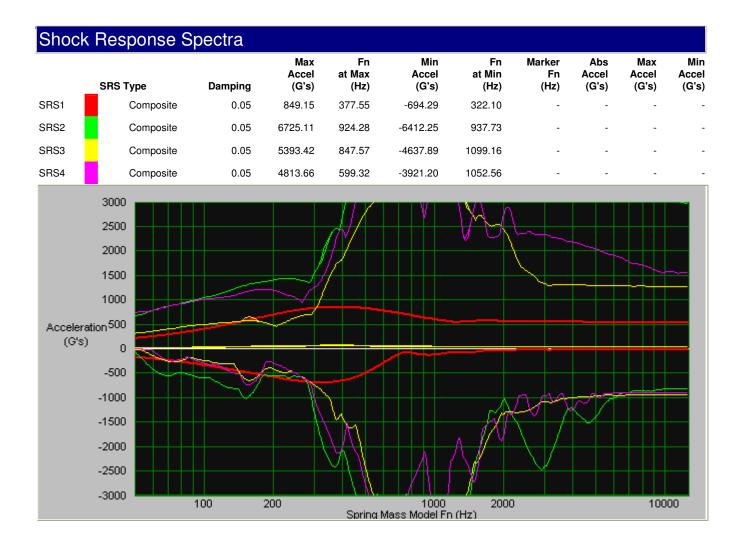
11.6 Set 6 - Card 29, 148 (strain gauged), 184



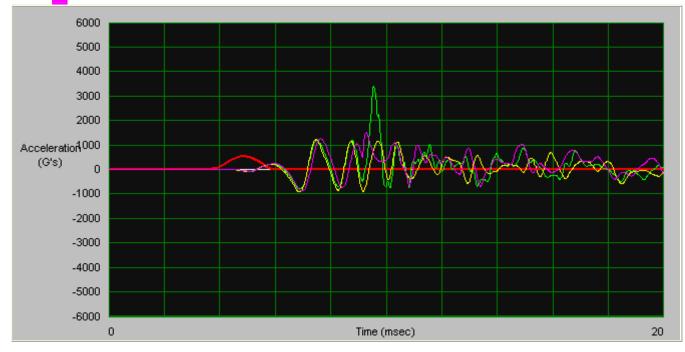

This report shall not be reproduced except in fall without the written consent of the laboratory and product owi

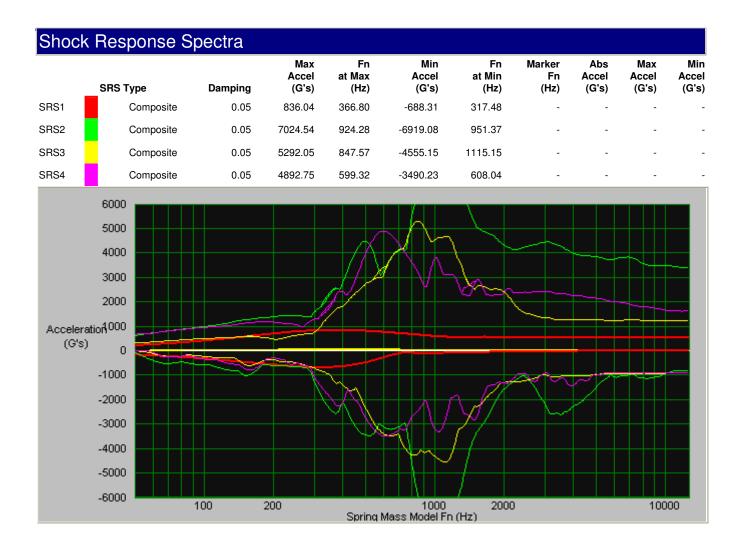
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	541.02	1.92	253.60	1302.08	541.02	-15.92					
Ch2	148 (strain gauged)	2845.14	0.70	404.31	3571.43	2845.14	-1121.92					
Ch3	29	1264.38	0.76	227.30	3378.38	1264.38	-965.40					
Ch4	184	2769.22	1.38	376.20	3048.78	2769.22	-957.87					



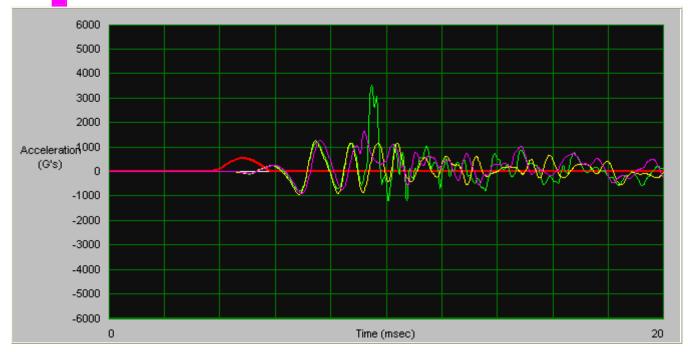


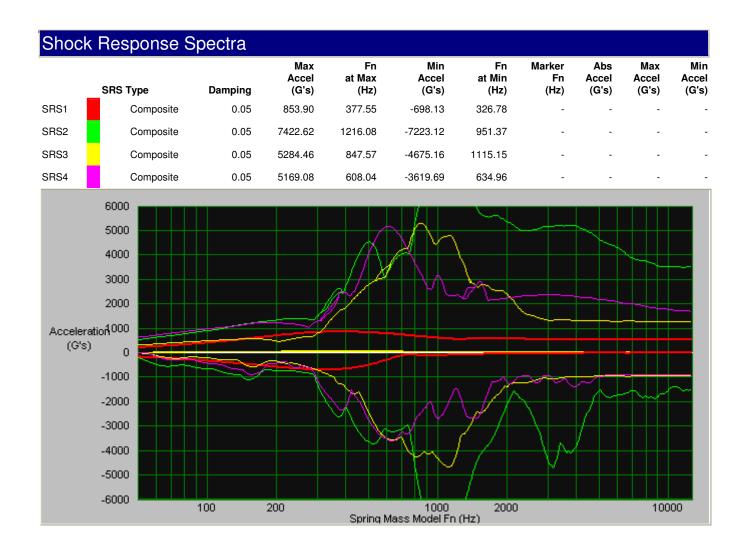
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	539.45	1.90	252.37	1315.79	539.45	-16.89					
Ch2	148 (strain gauged)	2968.68	0.60	434.55	3676.47	2968.68	-814.54					
Ch3	29	1262.46	0.74	224.65	3378.38	1262.46	-929.43					
Ch4	184	1418.33	1.96	566.01	1275.51	1418.33	-896.13					



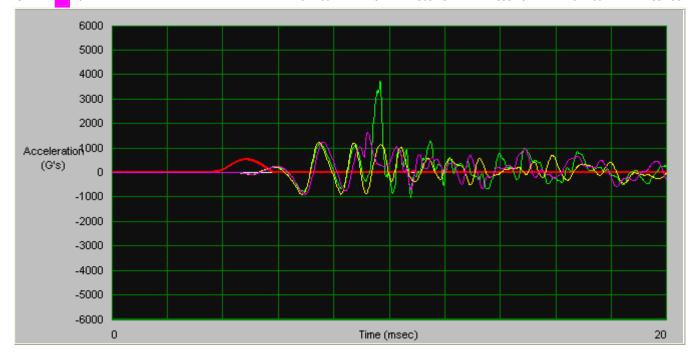

This report shall not be reproduced except in full without the written consent of the laboratory and product owner

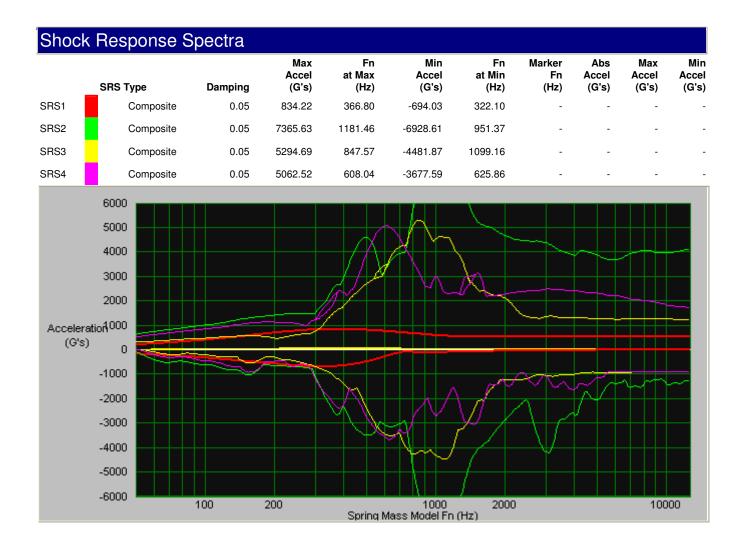
Acce	Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's				
Ch1	Table	531.17	1.94	252.60	1288.66	531.17	-15.15				
Ch2	148 (strain gauged)	3414.50	0.58	444.34	3906.25	3414.50	-798.54				
Ch3	29	1222.18	0.74	219.80	3289.47	1222.18	-907.62				
Ch4	184	1506.28	1.90	544.07	1302.08	1506.28	-880.50				



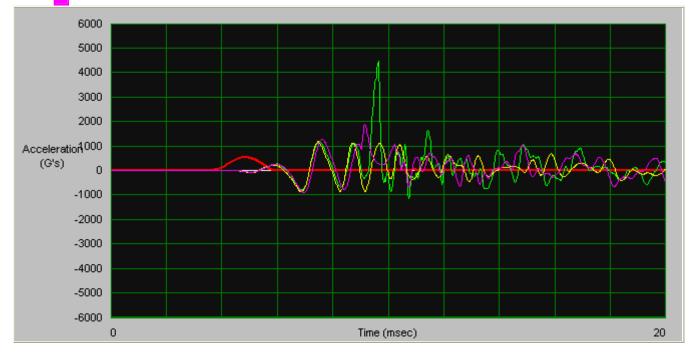

This report small not be reproduced except in full without the written consent of the faboratory and product owner

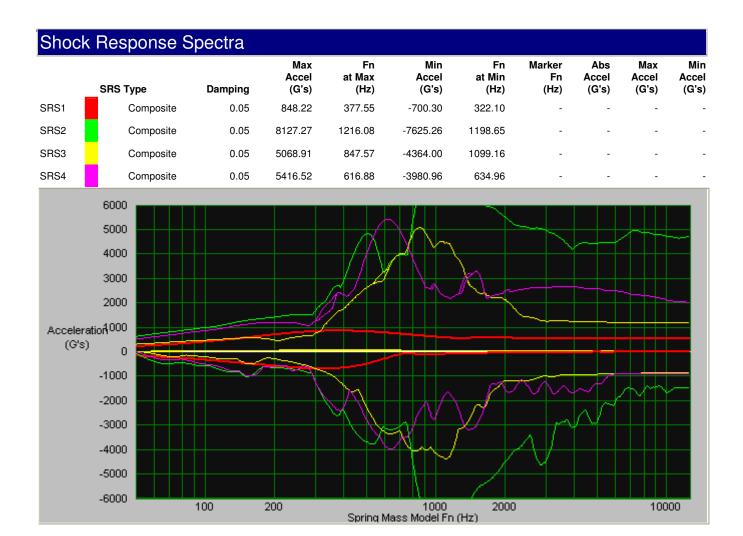
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	543.56	1.90	253.44	1315.79	543.56	-18.42					
Ch2	148 (strain gauged)	3515.16	0.48	432.59	4166.67	3515.16	-1206.46					
Ch3	29	1254.30	0.76	224.38	3289.47	1254.30	-926.24					
Ch4	184	1627.93	1.98	563.58	1262.63	1627.93	-892.61					




This report shall not be reproduced except in full without the written consent of the laboratory and product owner

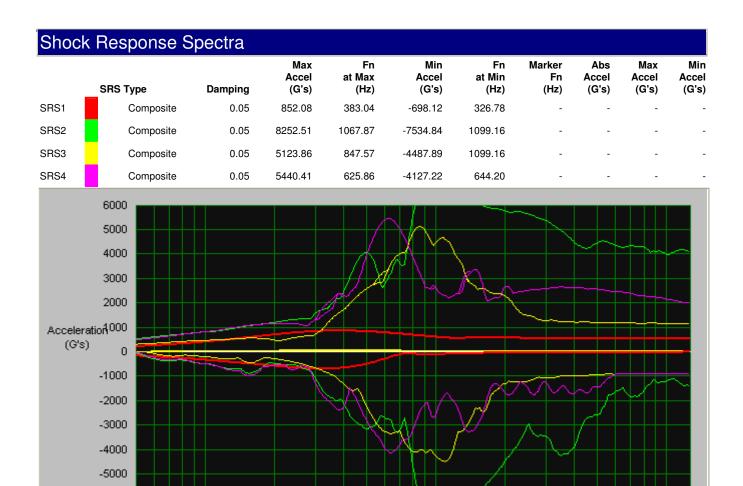
Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	530.04	1.92	251.85	1288.66	530.04	-17.81					
Ch2	148 (strain gauged)	3724.87	0.48	449.64	3787.88	3724.87	-1022.42					
Ch3	29	1236.31	0.76	221.55	3289.47	1236.31	-884.59					
Ch4	184	1622.69	1.82	509.78	1358.70	1622.69	-887.96					





Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	538.52	1.92	253.24	1302.08	538.52	-16.53					
Ch2	148 (strain gauged)	4461.10	0.46	454.72	4166.67	4461.10	-1157.16					
Ch3	29	1176.45	0.76	212.02	3205.13	1176.45	-863.97					
Ch4	184	1880.45	1.76	517.80	1404.49	1880.45	-904.50					

Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	541.47	1.88	252.50	1315.79	541.47	-20.10					
Ch2	148 (strain gauged)	3981.34	0.44	411.15	4629.63	3981.34	-1095.97					
Ch3	29	1157.05	0.50	142.46	3205.13	1157.05	-885.07					
Ch4	184	1889.69	1.76	491.56	1420.45	1889.69	-906.89					

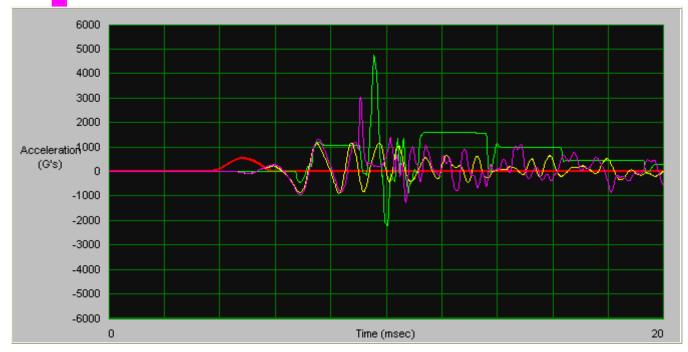

10000

-6000

100

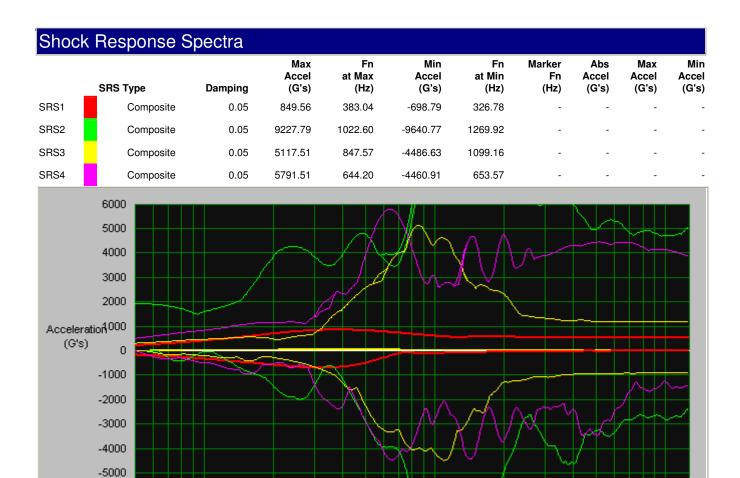
200

1000


Spring Mass Model Fn (Hz)

2000

I his report shall not be reproduced except in tull without the written consent of the laboratory and product owner CELO-001-PROC-451 Rev 11



Acce	Acceleration vs Time											
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's					
Ch1	Table	539.43	1.92	252.77	1315.79	539.43	-17.17					
Ch2	148 (strain gauged)	4753.76	0.44	491.03	4464.29	4753.76	-2219.63					
Ch3	29	1160.80	0.48	140.62	3289.47	1160.80	-891.83					
Ch4	184	3045.24	0.66	491.87	2551.02	3045.24	-1273.69					

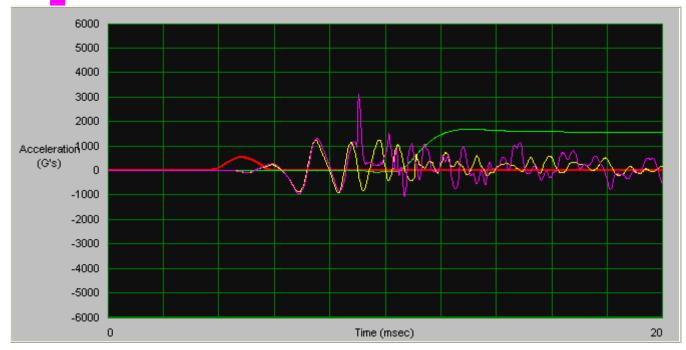
10000

1000

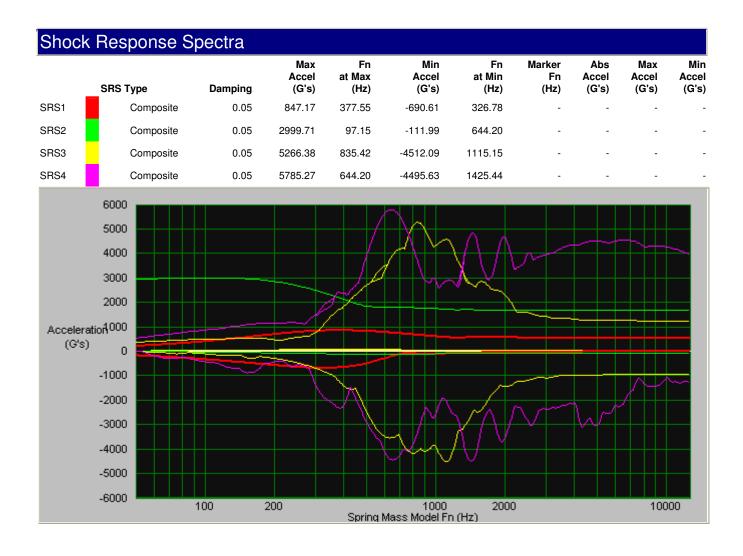
Spring Mass Model Fn (Hz)

2000

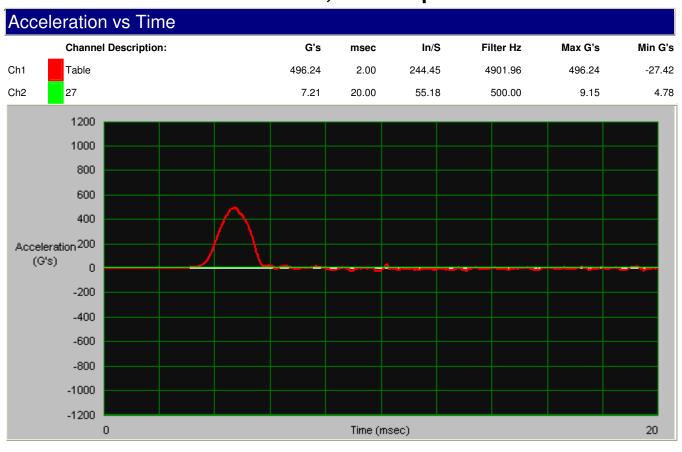
CELQ-001-PROC-451 Rev 11

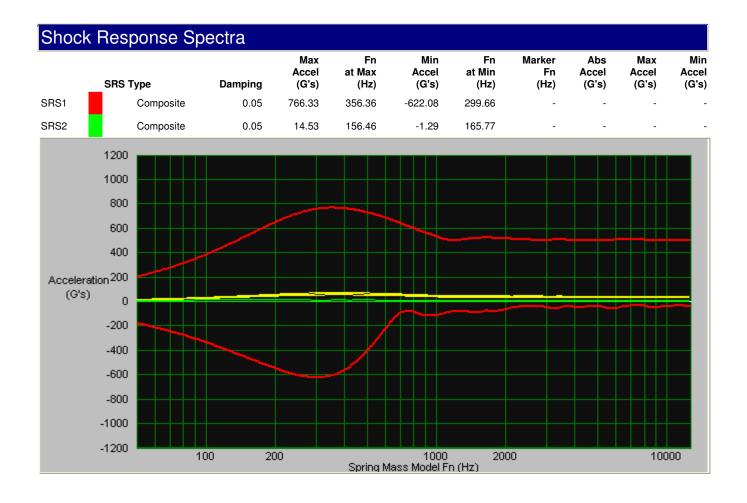

-6000

100


200

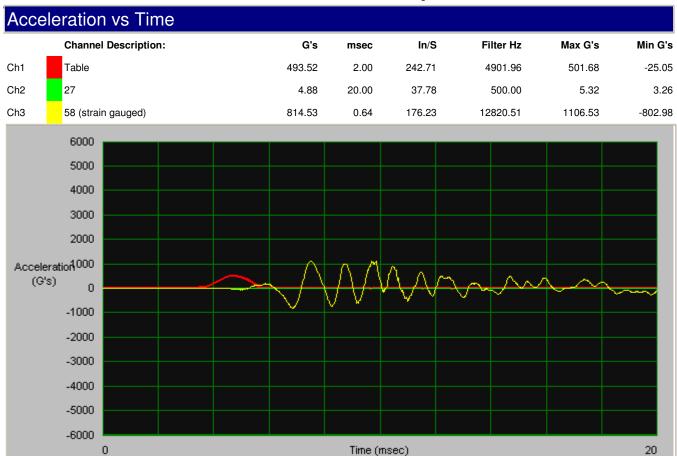
Acceleration vs Time										
	Channel Description:	G's	msec	In/S	Filter Hz	Max G's	Min G's			
Ch1	Table	540.45	1.90	251.35	1315.79	540.45	-17.60			
Ch2	148 (strain gauged)	1680.85	9.28	5361.00	262.05	1680.85	-63.50			
Ch3	29	1240.26	0.56	169.65	3289.47	1240.26	-917.40			
Ch4	184	3108.61	0.64	491.01	2604.17	3108.61	-1082.80			

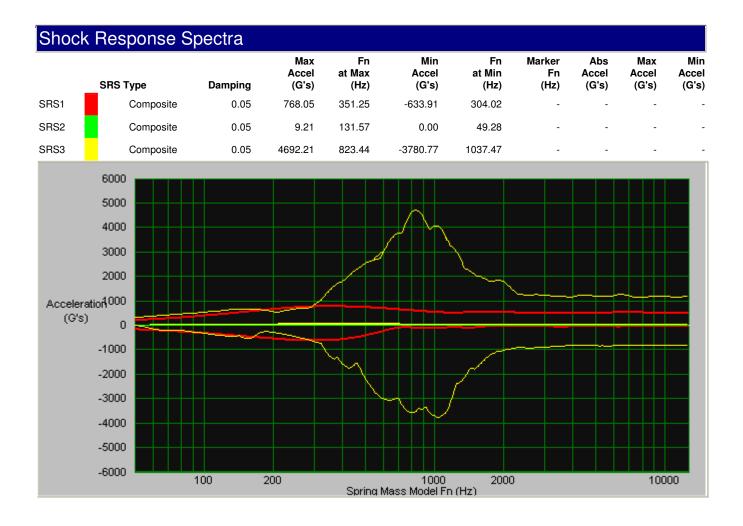




11.7 Set 7 – Card 27, 58 (strain gauged)

Card 27, 58 - Drop 1

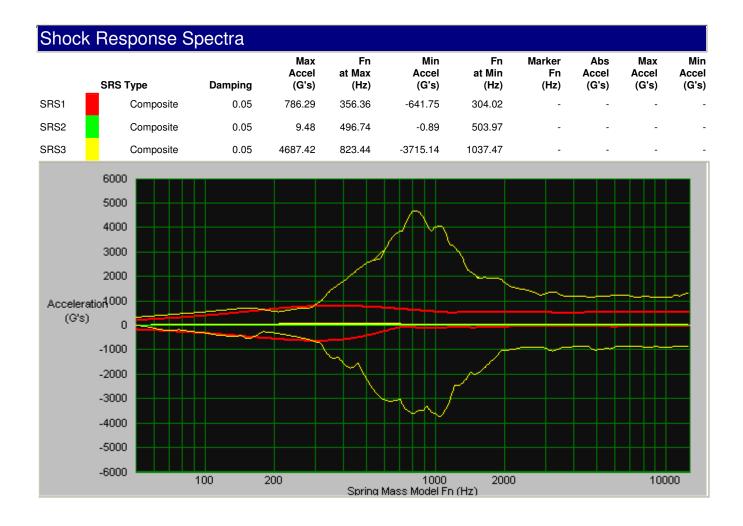



20

Card 27, 58 - Drop 2

20

-3000 -4000 -5000 -6000


0

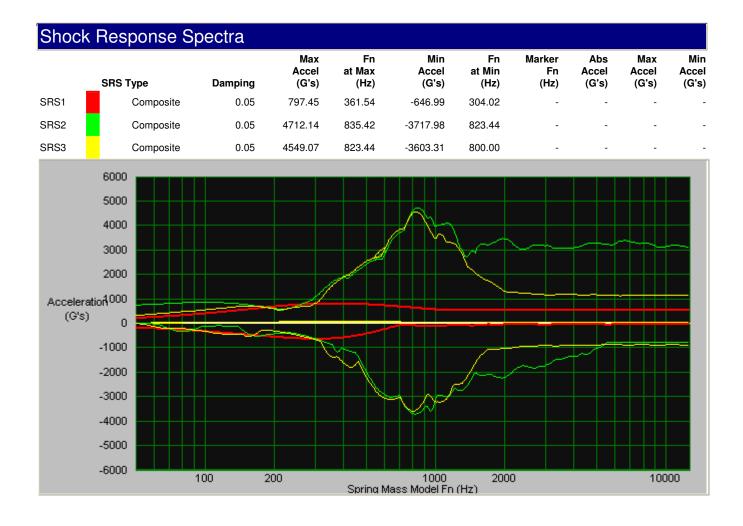
Card 27, 58 - Drop 3

	Card 21, 30 – Drop 3										
Ac	celerat	tion vs Tin	ne								
	Channel Description:				G's	msec	ln/	S F	ilter Hz	Max G's	Min G's
Ch1	Tab	le			501.48	1.98	244.1	5 4	4950.50	512.25	-23.69
Ch2	27				4.91	20.00	37.9	3	500.00	6.10	2.74
Ch3	58 (strain gauged)			1113.09	0.78	211.7	6 12	2820.51	1113.09	-834.77
	60	000									
	50	000									
	40	000									
	30	000									
	20	000									
Αc	celeratioA ⁰	100				A 14					
~0	(G's)	0			\triangle	AAC	$\Delta \Delta$		$\sqrt{\sim}$	$\sim\sim$	
	-10	100		·	\vee	V V	101	0 ~	~	Ť	
	-20	100									

Time (msec)

20

-2000 -3000 -4000 -5000 -6000


0

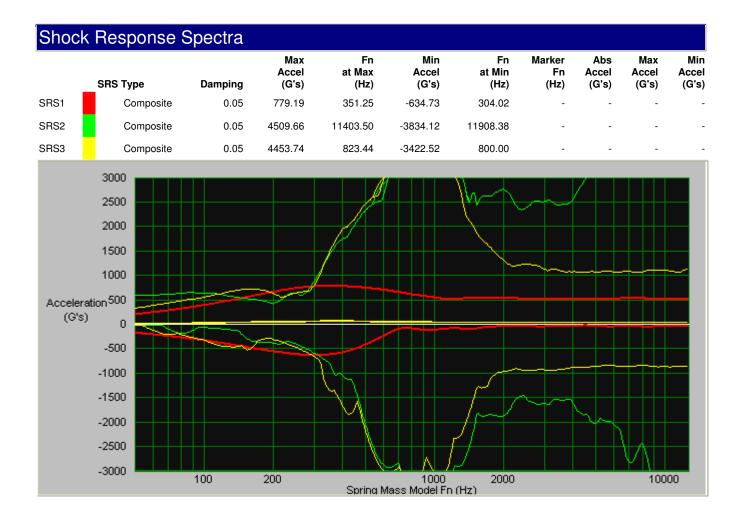
Card 27, 58 - Drop 4

	Caru 21, 36 - Drop 4											
Ac	celeration	n vs Tir	ne									
Channel Description:			G's		msec	In/	S Fi	Iter Hz	Max G's	Min G's		
Ch1	Table				517.78	1.96	246.7	1 4	4950.50		-23.28	
Ch2	27			2307.92	0.74	363.9	8 3	703.70	2307.92	-760.12		
Ch3	58 (strai	n gauged)			1127.04	0.78	210.2	210.29 1.		1127.04	-863.52	
	6000											
	5000											
	4000											
	3000											
	2000						1					
Ac	cceleration 000				\wedge	ΛΛ	A 60	A 1	~~ A			
	(G's) 0 -1000				7	VV.	A CA		200A		<u>β</u> c≈	

Time (msec)

This report shall not be reproduced except in full without the written consent of the laboratory and product owner

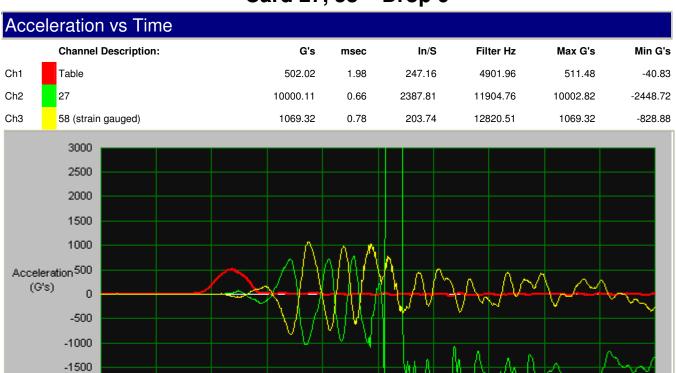
Acceleration 500 (G's)

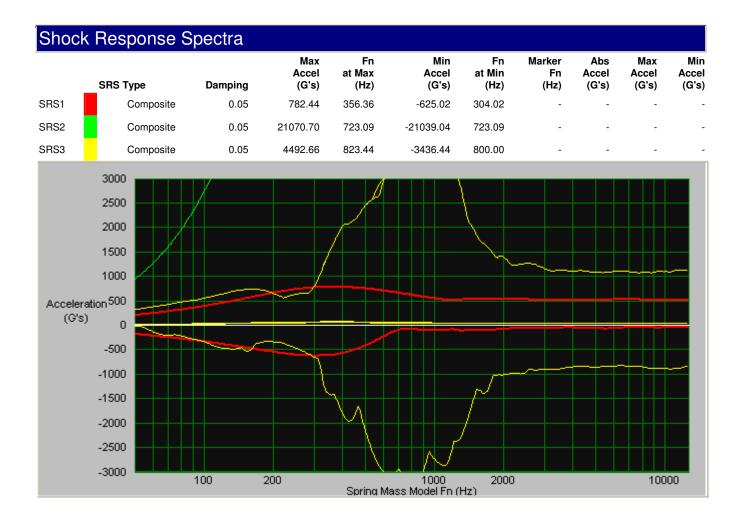

-500 -1000 -1500 -2000 -2500 -3000

0

Card 27, 58 - Drop 5

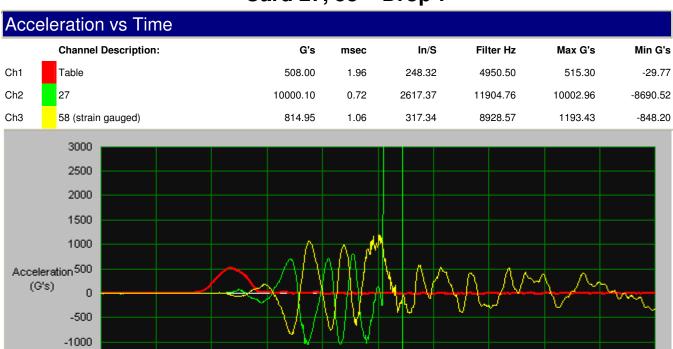
					a. u = . ,		- . • •				
Acce	eleration	n vs Tir	ne								
	Channel Description:				G's	msec	In/S	3	Filter Hz	Max G's	Min G's
Ch1	Table	Table			499.39	1.98	244.5	5	4901.96	507.77	-23.20
Ch2	27	27			4134.17	0.16	80.2	2	12820.51	4134.17	-802.55
Ch3	58 (strai	58 (strain gauged)			1047.26	0.78	203.4	2	12820.51	1047.26	-838.92
	3000										
	2500										
	2000										
	1500										
	1000										
	1000				M	M M	k s			7	

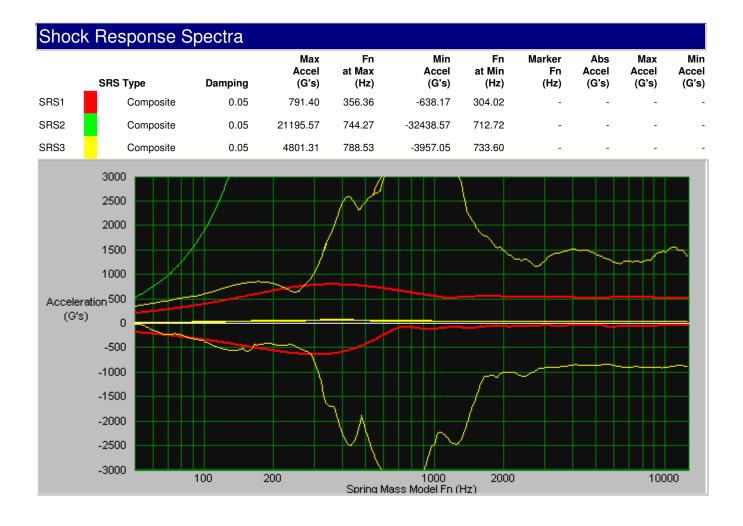

This report shall not be reproduced except in full without the written consent of the laboratory and product own


-2000 -2500 -3000

0

Card 27, 58 - Drop 6


This report shall not be reproduced except in full without the written consent of the laboratory and product owner


-1500 -2000 -2500 -3000

0

Card 27, 58 - Drop 7

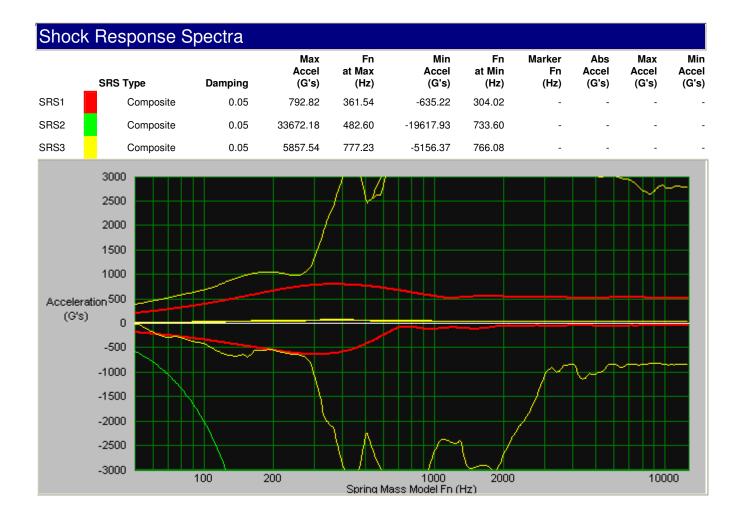
This report shall not be reproduced except in full without the written consent of the laboratory and product owner

-500 -1000 -1500 -2000 -2500 -3000

0

Card 27, 58 - Drop 8

				Ot	11 G Z I	, 50 –	ыор	U			
Acc	celeration	ı vs Tin	ne								
	Channel Description:				G's	msec	In	/S F	ilter Hz	Max G's	Min G's
Ch1	Table				497.75	2.02	244.	54	4807.69	497.75	-41.24
Ch2	27				1409.95	3.50	3.50 582.		2793.30	1409.95	-703.73
Ch3	58 (strai	n gauged)			1230.30	1.16	317.	11	8474.58	1230.30	-780.84
	3000		1								
	2500										
	2000										
	1500										
	1000						Λĺ				
					Λ	A M	(V)	Λ - α	- 0	Λ	
	eleration 500 (G's)					M M	/ Jungo	MYV	MA	fry	
	(~~) n						7 - 4 - 7 - 17	- U			A SOCIETY OF THE PROPERTY OF T

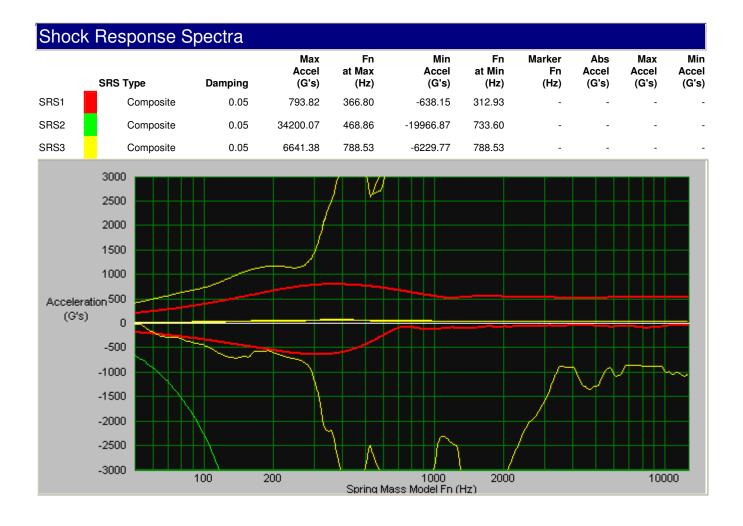

-1500 -2000 -2500 -3000

0

Card 27, 58 - Drop 9

			Ca	11 U Z1	, 50 –	טוע	γP	9			
Accel	eration vs T	ime									
	Channel Descripti	on:		G's	msec		In/S	Filte	er Hz	Max G's	Min G's
Ch1	Table			517.35	1.94	24	5.16	495	0.50	517.35	-35.58
Ch2	27			10591.32	8.86	3389	9.89	112	6.13	10591.32	-10299.49
Ch3	58 (strain gauged)			2644.26	0.82	38	5.16	1041	6.67	2644.26	-814.45
Acceler (G's	3000 2500 2000 1500 1000 ation 500 -500		<u></u>	$\sqrt{}$		M _M	Δ	M	, ∕^^	\	

(G's)

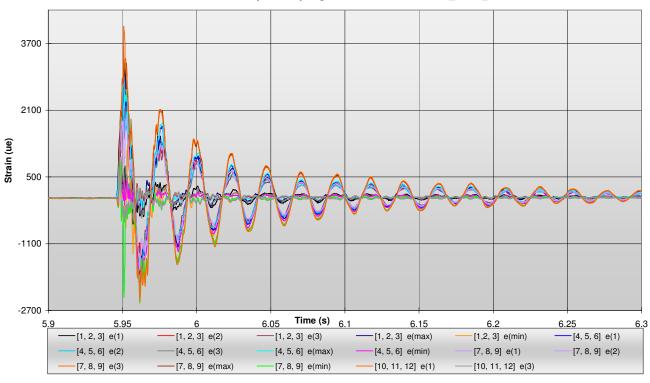

-500 -1000 -1500 -2000 -2500 -3000

0

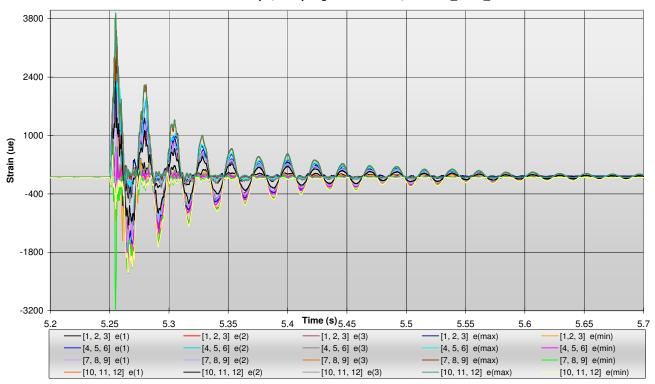
Card 27, 58 - Drop 10

				Ca	iiu 21	, 50 –	וט	υþ	10			
Acc	eleration	n vs Tir	ne									
	Channel	Description	1:		G's	msec		In/S	Filt	er Hz	Max G's	Min G's
Ch1	Table	Table			511.37	1.96	247.13		50	00.00	520.50	-29.14
Ch2	27	7			10009.37	8.78	3	3647.95	11	36.36	10587.72	-10302.03
Ch3	58 (strain	gauged)			1628.52	0.80		437.15	113	63.64	3221.44	-847.14
	3000						,					
	2500						Щ.					
	2000							4				
	1500						/_					
	1000				Λ							
					$\square \wedge$	[/\ /\	\mathbb{T}	h.		6.0		
Acc	eleration ⁵⁰⁰					11 11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mark A	N /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

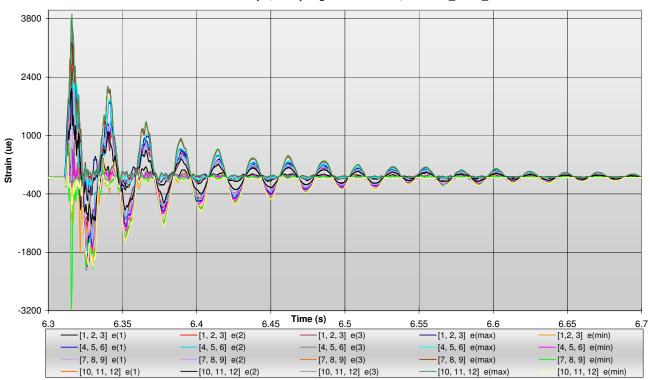
This report shall not be reproduced except in fall without the written consent of the laboratory and product owi

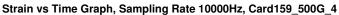


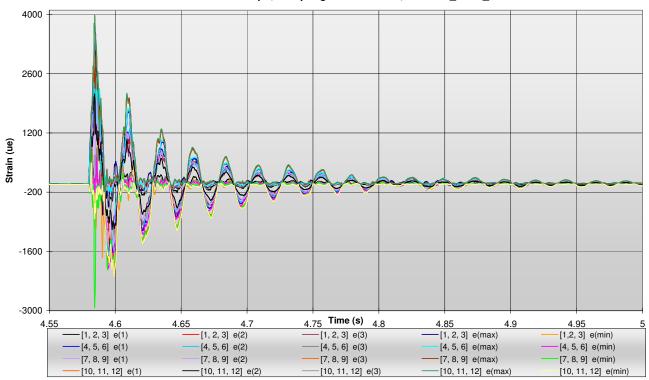
12. APPENDIX C: Strain vs Time

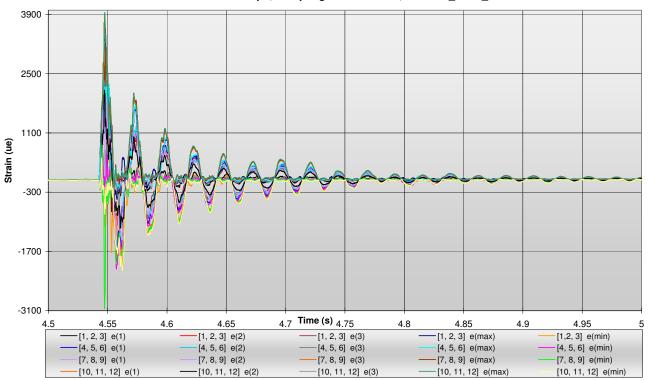

12.1 Set 1 - Card 159

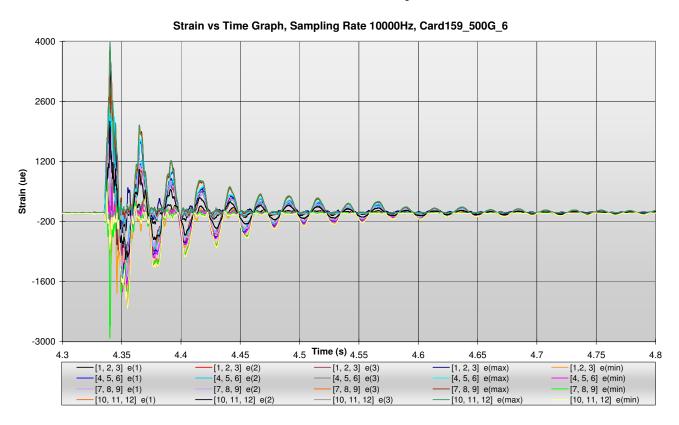
Card 159 - Drop 1

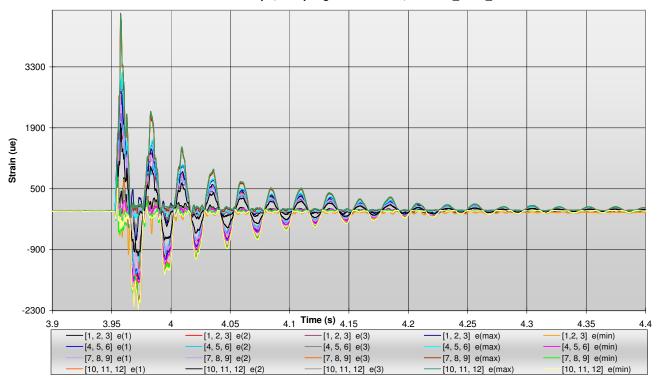


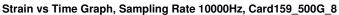


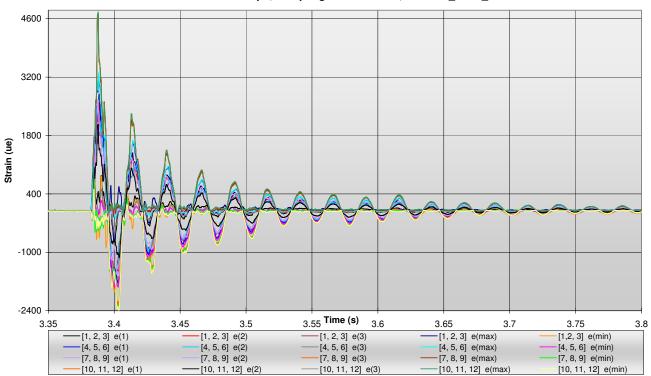


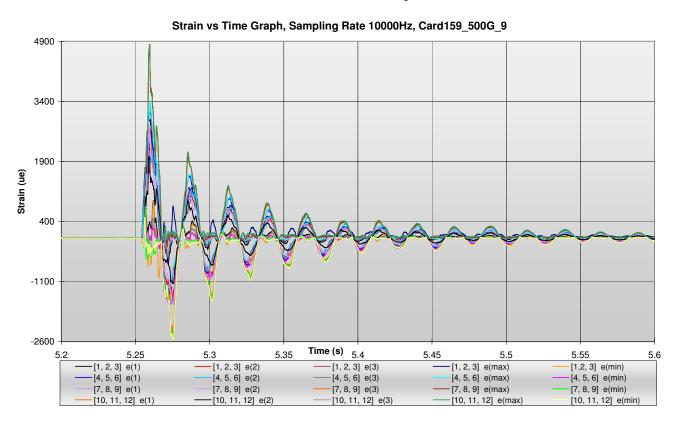


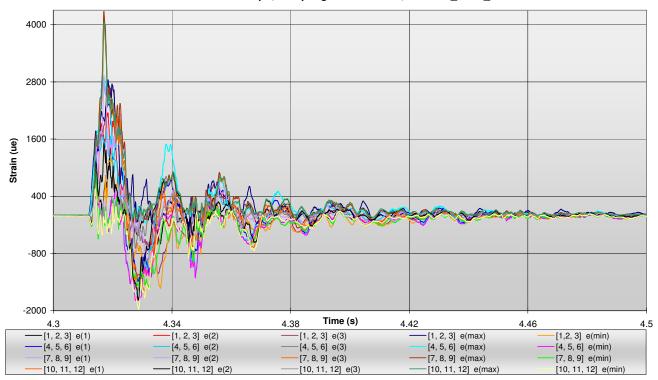




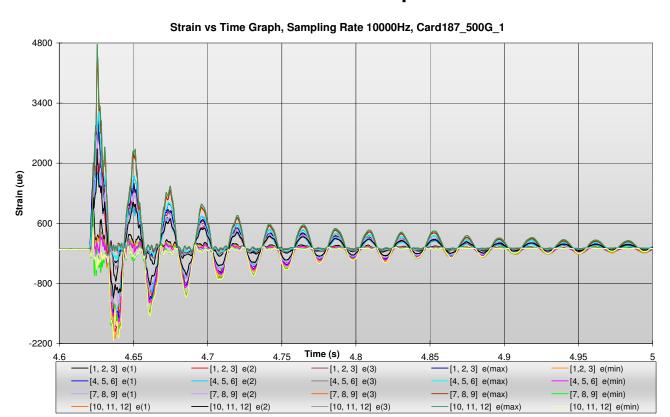


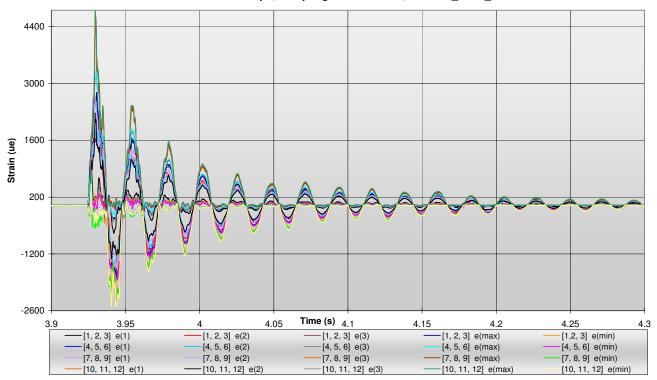




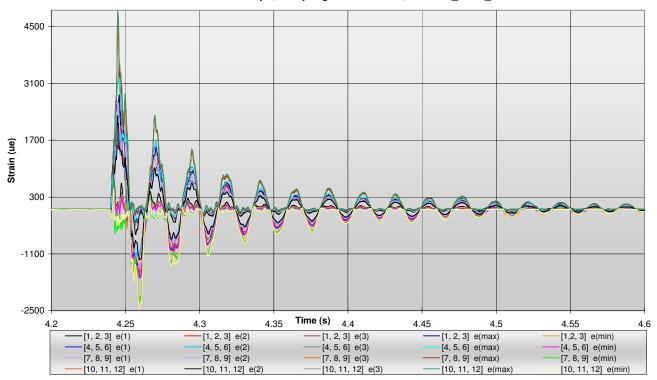


CELQ-001-PROC-451 Rev 11

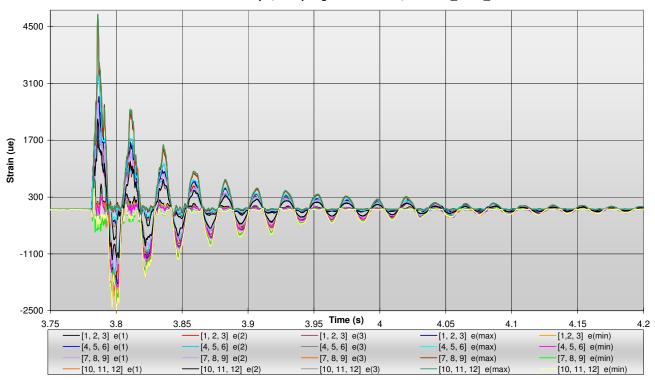


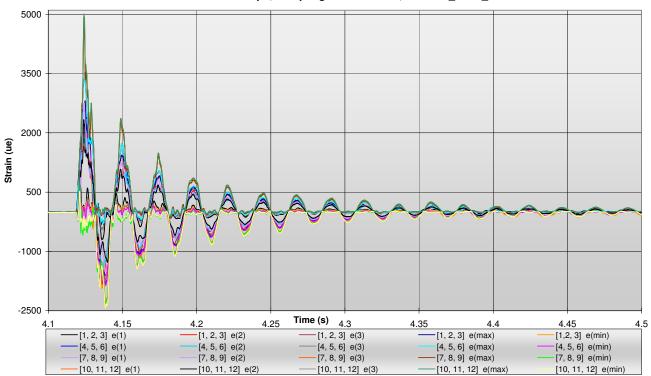

12.2 Set 2 - Card 187

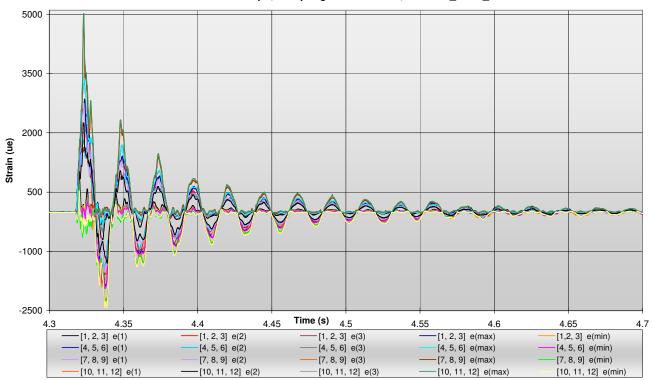
Card 187 - Drop 1

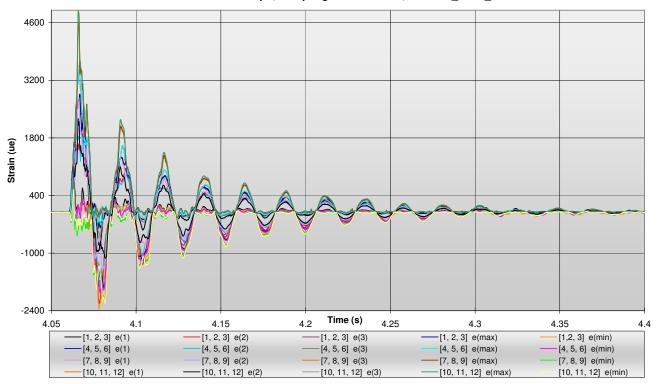


CELQ-001-PROC-451 Rev 11

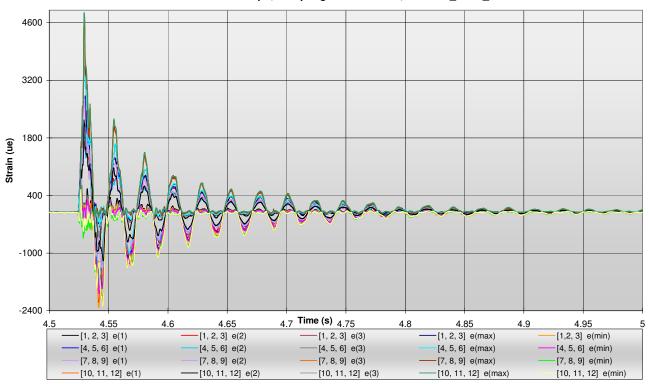


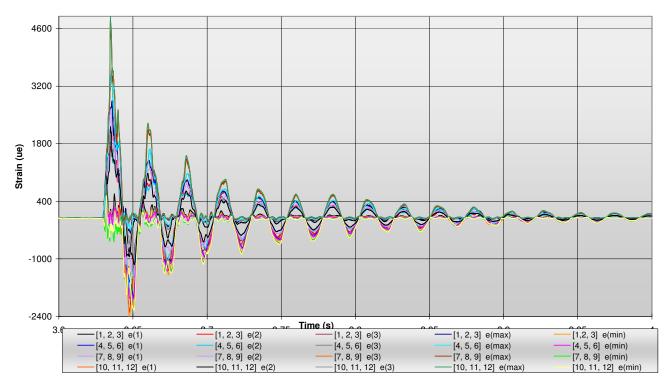






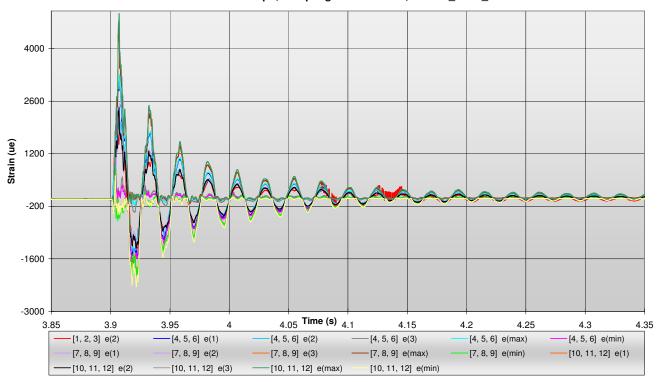
Strain vs Time Graph, Sampling Rate 10000Hz, Card187_500G_7


CELQ-001-PROC-451 Rev 11



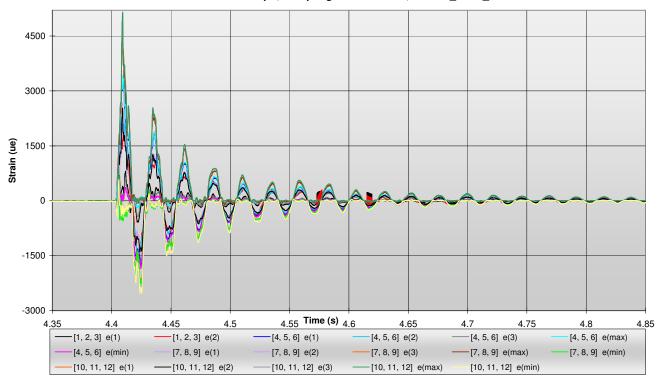
Strain vs Time Graph, Sampling Rate 10000Hz, Card187_500G_9

CELQ-001-PROC-451 Rev 11

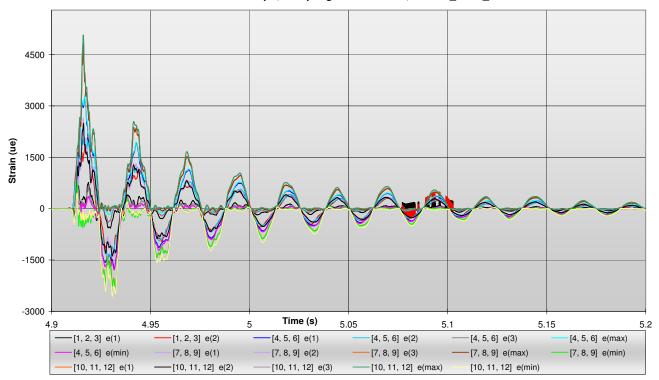


12.3 Set 5 - Card 25

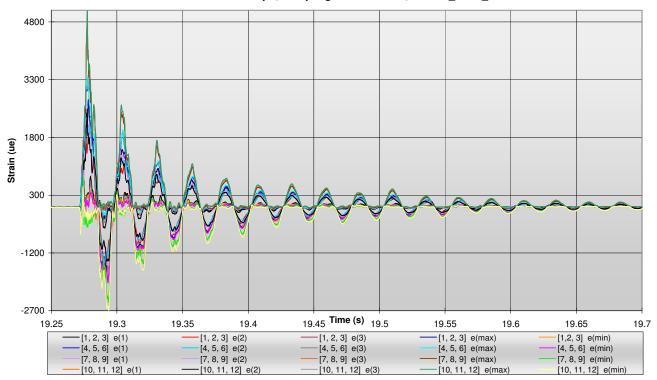
Card 25 - Drop 1

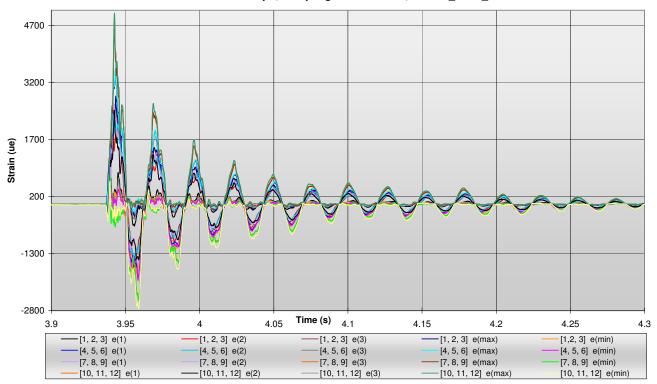

Strain vs Time Graph, Sampling Rate 10000Hz, Card25_500G_1

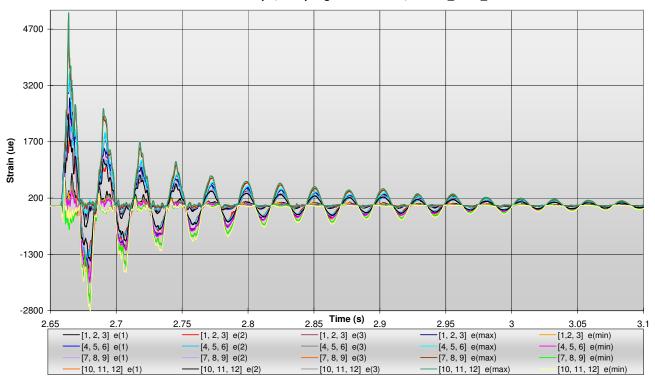
This report shall not be reproduced except in full without the written consent of the laboratory and product owner

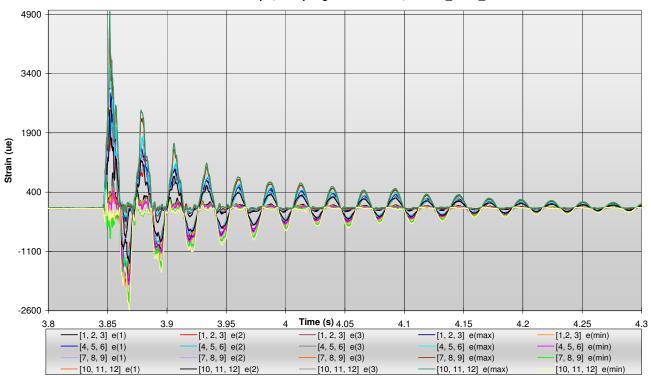


Card 25 – Drop 2

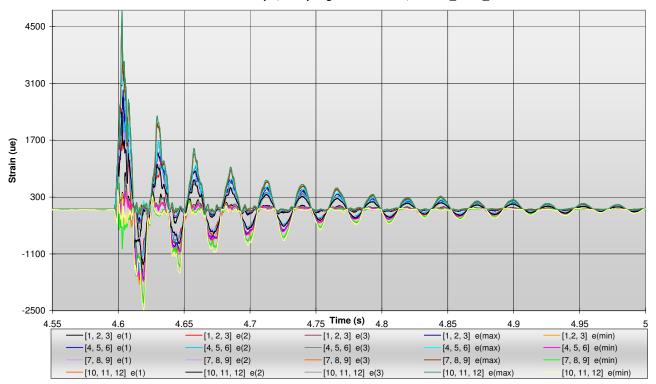


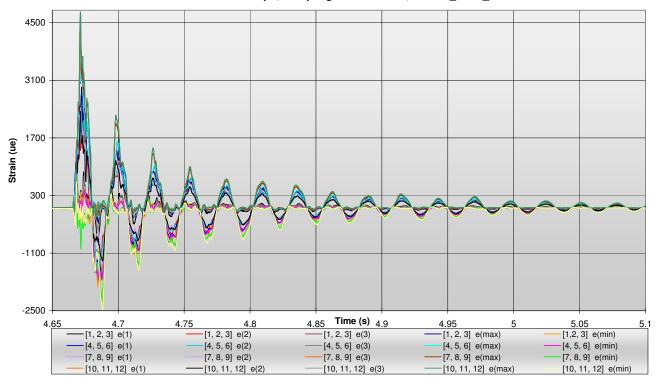

Card 25 – Drop 3



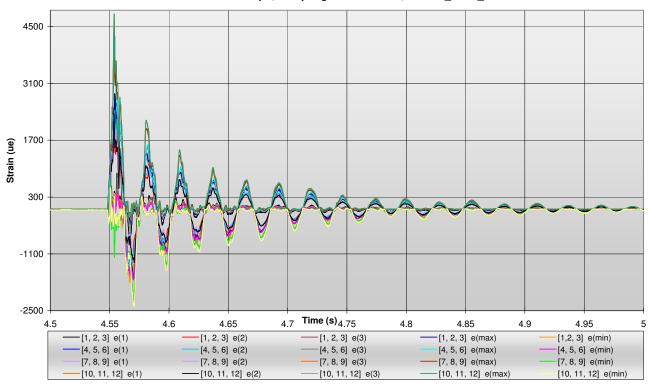


Strain vs Time Graph, Sampling Rate 10000Hz, Card25_500G_6

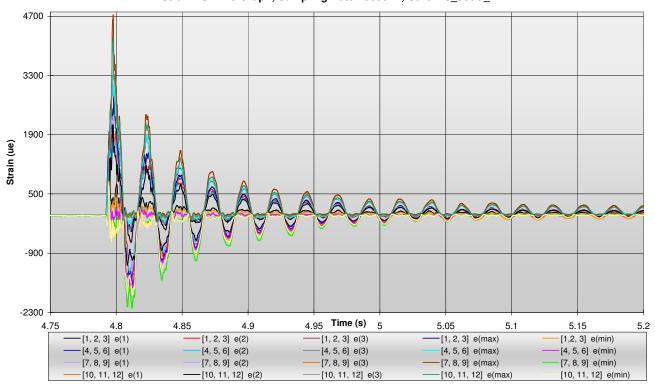

CELQ-001-PROC-451 Rev 11



Strain vs Time Graph, Sampling Rate 10000Hz, Card25_500G_8

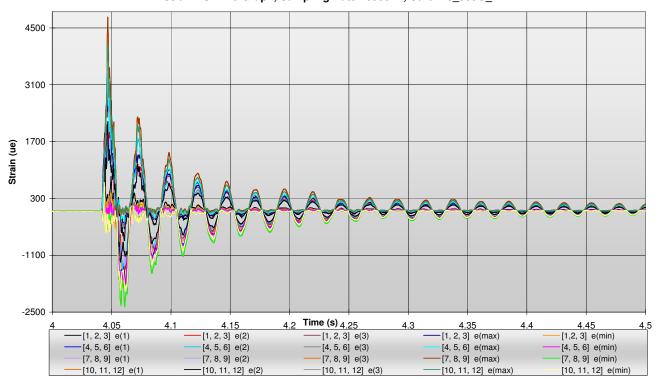


CELQ-001-PROC-451 Rev 11

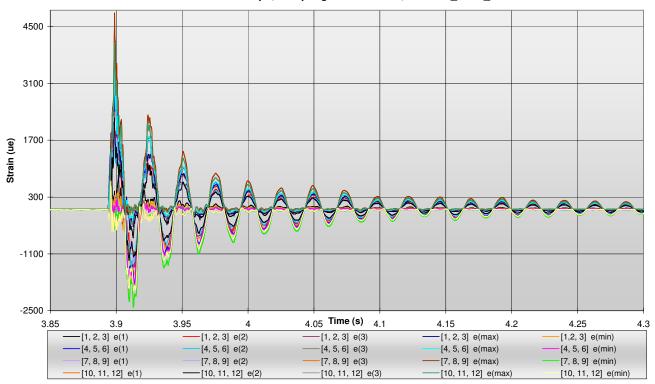


12.4 Set 6 - Card 148

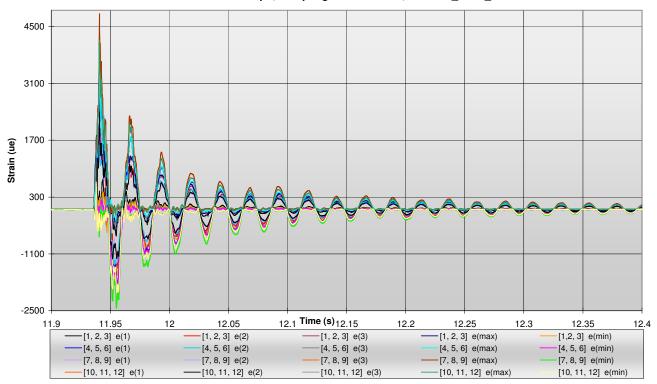
Card 148 - Drop 1



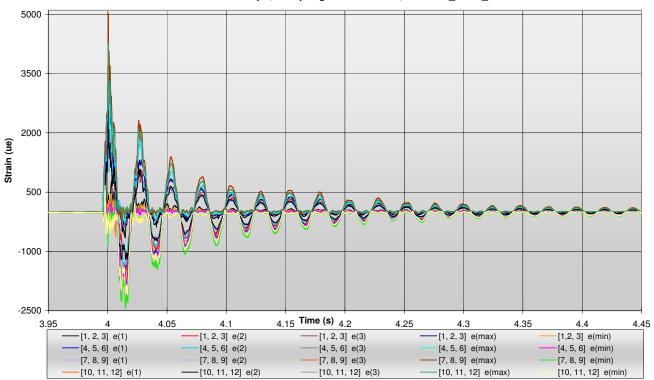
CELQ-001-PROC-451 Rev 11



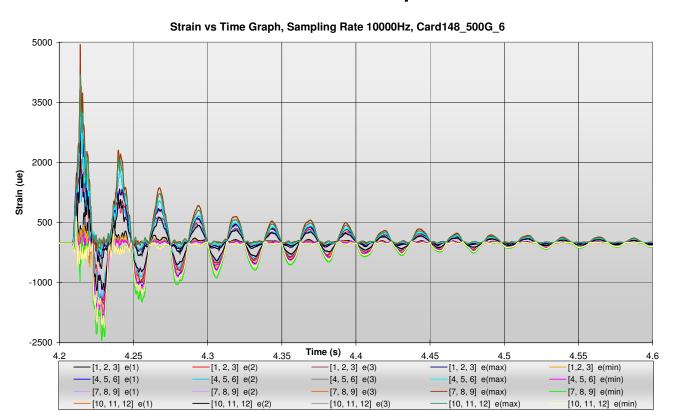
Card 148 – Drop 2



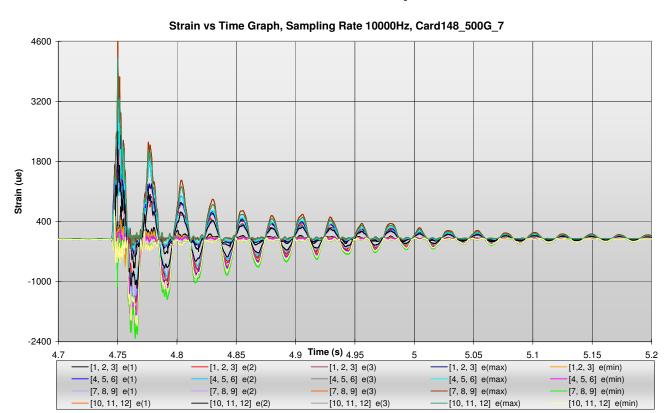
Card 148 – Drop 3


Card 148 - Drop 4

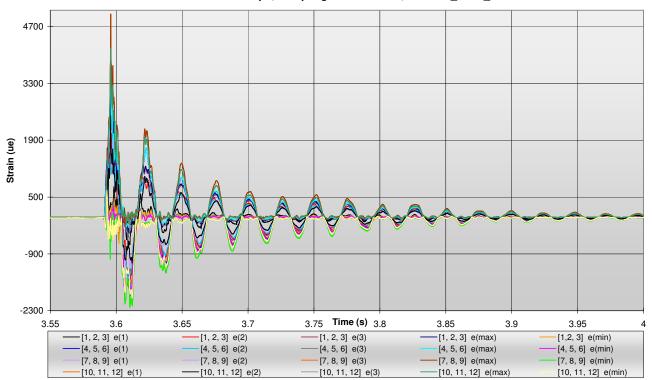
Card 148 – Drop 5



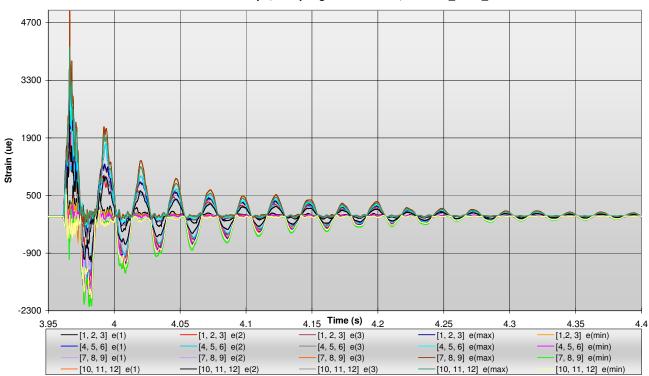
This report shall not be reproduced except in full without the written consent of the laboratory and product owner


Card 148 - Drop 6

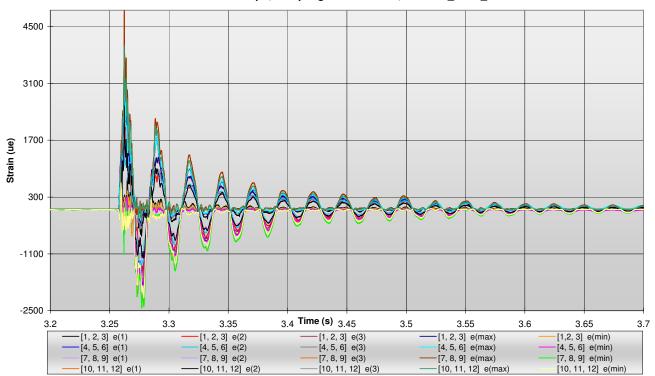
This report shall not be reproduced except in full without the written consent of the laboratory and product owner


Card 148 - Drop 7

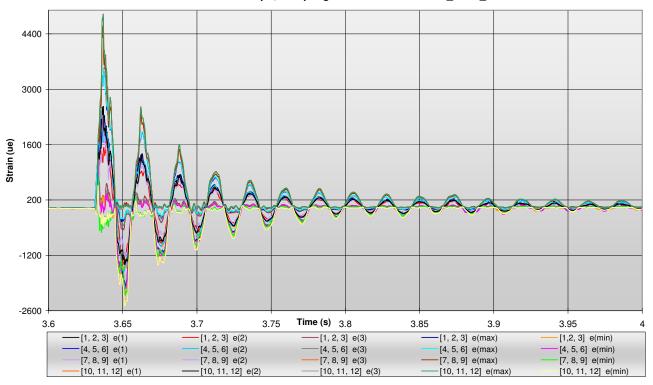
CELQ-001-PROC-451 Rev 11


Card 148 – Drop 8

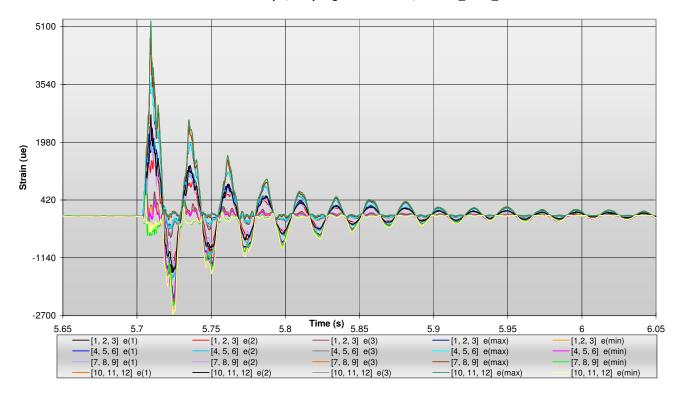
Card 148 – Drop 9



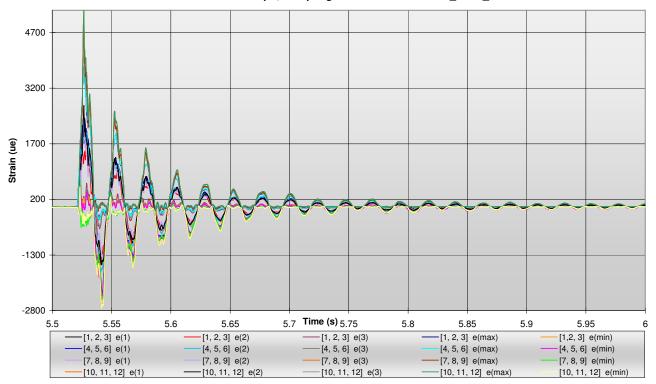
Card 148 - Drop 10



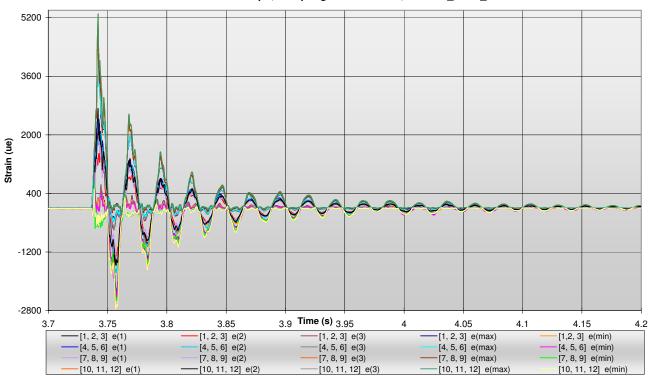
12.5 Set 7 - Card 58

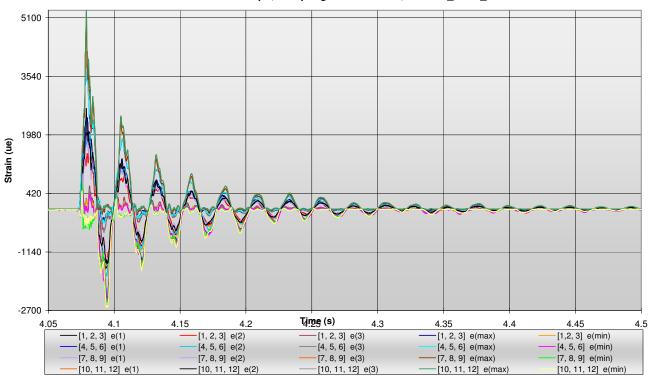

Card 58 - Drop 1

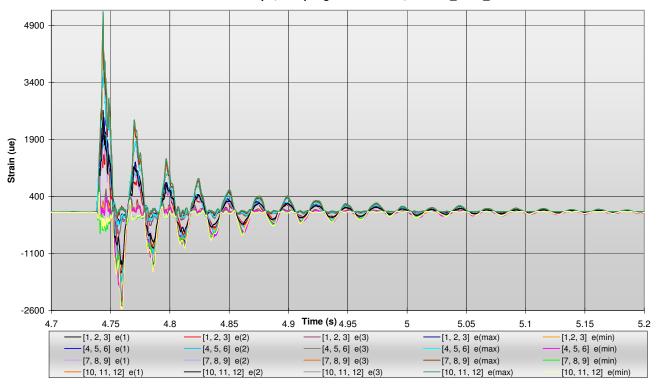
Strain vs Time Graph, Sampling Rate 10000Hz Card 58_500G_1

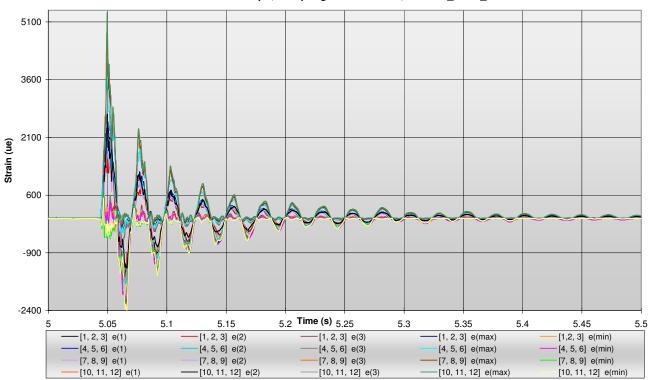


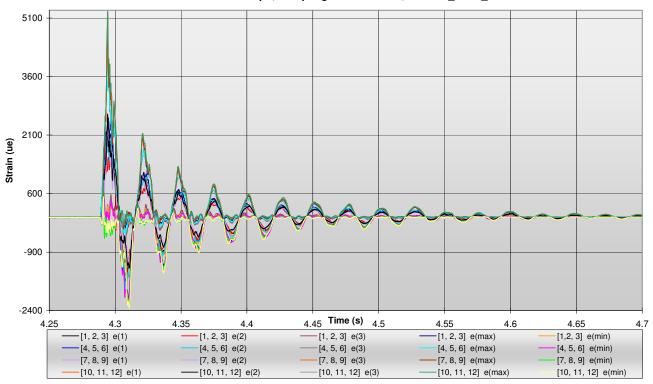
This report shall not be reproduced except in full without the written consent of the laboratory and p

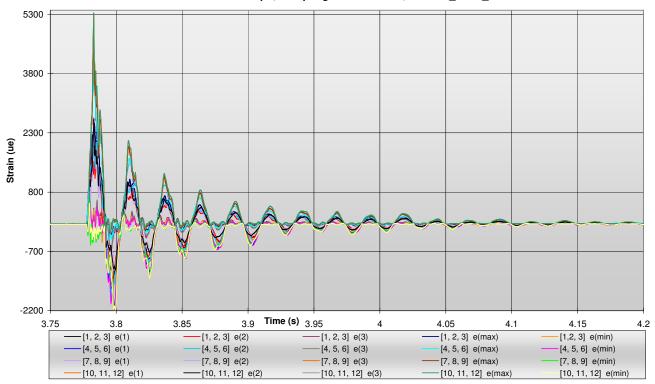




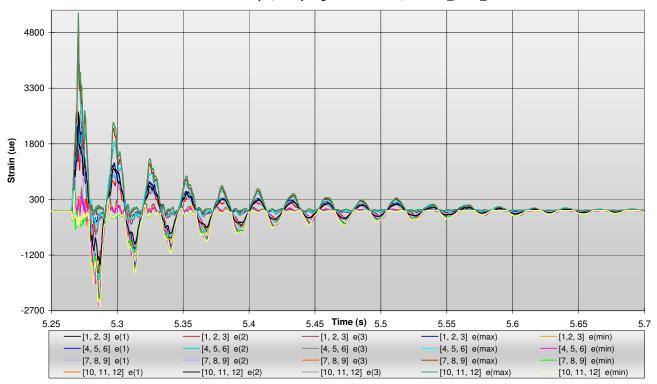








Strain vs Time Graph, Sampling Rate 10000Hz, Card 58_500G_8



CELQ-001-PROC-451 Rev 11

13. Event Detector Data

13.1 Set 1

Project Summary NASA-1.xls

13.2 Set 2

Project Summary NASA-2.xls

13.3 Set 3

Project Summary NASA-3.xls

13.4 Set 4

Project Summary NASA-4.xls

13.5 Set 5

Project Summary NASA-5.xls

13.6 Set 6

13.7 Set 7

